Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Physics: Quantum Computing
Published 'Game-changing' findings for sustainable hydrogen production


Hydrogen fuel could be a more viable alternative to traditional fossil fuels, according to University of Surrey researchers who have found that a type of metal-free catalysts could contribute to the development of cost-effective and sustainable hydrogen production technologies.
Published Distortion-free forms of structured light


Research offers a new approach to studying complex light in complex systems, such as transporting classical and quantum light through optical fiber, underwater channels, living tissue and other highly aberrated systems.
Published Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time


Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.
Published Entangled atoms cross quantum network from one lab to another


Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.
Published Researchers devise a new path toward 'quantum light'


Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.
Published Passive radiative cooling can now be controlled electrically


Energy-efficient ways of cooling buildings and vehicles will be required in a changing climate. Researchers have now shown that electrical tuning of passive radiative cooling can be used to control temperatures of a material at ambient temperatures and air pressure.
Published Seawater split to produce 'green' hydrogen


Researchers have successfully split seawater without pre-treatment to produce green hydrogen.
Published Thin, lightweight layer provides radiation barrier for perovskites in space, protection from elements on Earth


An ultrathin protective coating proves sufficient to protect a perovskite solar cell from the harmful effects of space and harden it against environmental factors on Earth, according to newly published research.
Published Researchers take a step toward novel quantum simulators


If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.
Published New method to control electron spin paves the way for efficient quantum computers


Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.
Published Qubits on strong stimulants



In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.
Published Stability of perovskite solar cells reaches next milestone


Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
Published Meteorites reveal likely origin of Earth's volatile chemicals


By analyzing meteorites, researchers have uncovered the likely far-flung origin of Earth's volatile chemicals, some of which form the building blocks of life.
Published Quantum physicists make major nanoscopic advance



In a new breakthrough, researchers have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This in turn, opens new doors for companies and others to exploit the technology commercially.
Published Scientists observe 'quasiparticles' in classical systems


Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.
Published How plants are inspiring new ways to extract value from wastewater


Scientists are drawing inspiration from plants to develop new techniques to separate and extract valuable minerals, metals and nutrients from resource-rich wastewater.
Published No 'second law of entanglement' after all


When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.
Published Physical effect also valid in the quantum world


Physicists have experimentally proven that an important theorem of statistical physics applies to so-called 'Bose-Einstein condensates.' Their results now make it possible to measure certain properties of the quantum 'superparticles' and deduce system characteristics that would otherwise be difficult to observe.
Published Approaching the terahertz regime


A class of nonvolatile memory devices, called MRAM, based on quantum magnetic materials, can offer a thousandfold performance beyond current state-of-the-art memory devices. The materials known as antiferromagnets were previously demonstrated to store stable memory states, but were difficult to read from. This new study paves an efficient way for reading the memory states, with the potential to do so incredibly quickly too.
Published Shedding light on quantum photonics


As buzz grows ever louder over the future of quantum, researchers everywhere are working overtime to discover how best to unlock the promise of super-positioned, entangled, tunneling or otherwise ready-for-primetime quantum particles, the ability of which to occur in two states at once could vastly expand power and efficiency in many applications.