Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Physics: Quantum Computing
Published The world's largest turbulence simulation unmasks the flow of energy in astrophysical plasmas


Researchers uncover the long-hidden process that helps explain why the Sun's corona can be vastly hotter than the solar surface that emits it.
Published Researchers show a new way to induce useful defects using invisible material properties



Much of modern electronic and computing technology is based on one idea: add chemical impurities, or defects, to semiconductors to change their ability to conduct electricity. These altered materials are then combined in different ways to produce the devices that form the basis for digital computing, transistors, and diodes. Indeed, some quantum information technologies are based on a similar principle: adding defects and specific atoms within materials can produce qubits, the fundamental information storage units of quantum computing.
Published New study models the transmission of foreshock waves towards Earth


As the supersonic solar wind surges towards Earth, its interaction with our planet's magnetic field creates a shock to deflect its flow, and a foreshock filled with electromagnetic waves. How these waves can propagate to the other side of the shock has long remained a mystery.
Published Scientists discover a novel photophysical mechanism that has achieved record-breaking efficiency for organic photovoltaics


Organic photovoltaics (OPVs) are a promising, economical, next-generation solar cell technology for scalable clean energy and wearable electronics. But the energy conversion loss due to the recombination of photogenerated charge carriers in OPVs has hindered further enhancement of their power conversion efficiency (PCE). Recently, researchers from City University of Hong Kong (CityU) overcame this obstacle by inventing a novel device-engineering strategy to successfully suppress the energy conversion loss, resulting in record-breaking efficiency.
Published Ammonium is the secret ingredient in stable, efficient, scalable perovskite solar cells


A new pathway to creating durable, efficient perovskite photovoltaics at industrial scale has been demonstrated through the first effective use of lead acetate as a precursor in making formamidinium-caesium perovskite solar cells.
Published Tandem solar cell achieves 32.5 percent efficiency


Researchers report a new world record for tandem solar cells consisting of a silicon bottom cell and a perovskite top cell. The new tandem solar cell converts 32.5 percent of the incident solar radiation into electrical energy.
Published Catalyzing 'net-zero' green hydrogen from the sun


Researchers have discovered an important in-situ protonation process that the photodynamics and separation of charge carriers in a photocatalyst, leading to efficient hydrogen generation from water using visible solar light. The process is enabled in an interstitial phosphorus doped carbon nitride structure, with only earth-abundant non-metallic elements, for its cost-effectiveness and high potential for practical applications.
Published Chaos gives the quantum world a temperature


Two seemingly different areas of physics are related in subtle ways: Quantum theory and thermodynamics. How can the laws of thermodynamics arise from the laws of quantum physics? This question has now been pursued with computer simulations, which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.
Published Quantum dots at room temp, using lab-designed protein



Quantum dots are normally made in industrial settings with high temperatures and toxic, expensive solvents -- a process that is neither economical nor environmentally friendly. But researchers have now pulled off the process at the bench using water as a solvent, making a stable end-product at room temperature. Their work opens the door to making nanomaterials in a more sustainable way by demonstrating that protein sequences not derived from nature can be used to synthesize functional materials.
Published Producing 'green' energy -- literally -- from living plant 'bio-solar cells'


Though plants can serve as a source of food, oxygen and décor, they're not often considered to be a good source of electricity. But by collecting electrons naturally transported within plant cells, scientists can generate electricity as part of a 'green,' biological solar cell. Now, researchers have used a succulent plant to create a living 'bio-solar cell' that runs on photosynthesis.
Published A peculiar protected structure links Viking knots with quantum vortices



Mathematical analysis identifies a vortex structure that is impervious to decay.
Published Good vibrations turbo charge green hydrogen production


Engineers have used sound waves to boost production of green hydrogen by 14 times, through electrolysis to split water.
Published Paper-thin solar cell can turn any surface into a power source


MIT researchers developed a scalable fabrication technique to produce ultrathin, flexible, durable, lightweight solar cells that can be stuck to any surface. Glued to high-strength fabric, the solar cells are only one-hundredth the weight of conventional cells while producing about 18 times more power-per-kilogram.
Published Economical eco-friendly fabrication of high efficiency chalcopyrite solar cells


Clean, sustainable energy solutions are essential to meet the ever-increasing energy demands of the human population. High efficiency solar cells are promising candidates to reduce carbon emissions and achieve carbon neutrality. In this regard, solution-processed copper indium gallium sulfur diselenide solar cells (CIGSSe) solar cells have generated significant interest owing to their excellent photovoltaic properties, such as high absorption of visible light, stability, and tunable bandgap. However, large scale, practical applications are limited by a two-fold challenge.
Published Built to last: The perovskite solar cells tough enough to match mighty silicon


Researchers have demonstrated a new way to create stable perovskite solar cells, with fewer defects and the potential to finally rival silicon's durability.
Published Health benefits of using wind energy instead of fossil fuels


A new study finds that the health benefits associated with wind power could more than quadruple if operators turned down output from the most polluting fossil-fuel-based power plants when energy from wind is available. However, compared to wealthier communities, disadvantaged communities would reap a smaller share of these benefits.
Published Large band bending at SnS interface opens door for highly efficient thin-film solar cells


Tin sulfide (SnS) solar cells have shown immense promise in the rush to develop more environmentally friendly thin-film solar cells. Yet for years SnS solar cells have struggled to achieve a high conversion efficiency. To overcome this, a SnS interface exhibiting large band bending was necessary, something a research group has recently achieved.
Published Cooling down solar cells, naturally


Too much sun and too much heat can reduce the efficiency of photovoltaics. A solar farm with optimally spaced panels facing the correct direction could cool itself through convection using the surrounding wind. Researchers explored how to exploit the geometry of solar farms to enhance natural cooling mechanisms.
Published Researchers create method for making net-zero aviation fuel


An interdisciplinary team of researchers has developed a potential breakthrough in green aviation: a recipe for a net-zero fuel for planes that will pull carbon dioxide (CO2) out of the air.
Published Simple semiconductor solutions could boost solar energy generation and enable better space probes


A 'simple' tweak to perovskite solar cells during the fabrication stage could help to unlock the untold potential of the renewable energy source, according to new research.