Space: Exploration Space: Structures and Features Space: The Solar System
Published

New image from James Webb Space Telescope reveals astonishing Saturn and its rings      (via sciencedaily.com)     Original source 

Saturn's iconic rings seem to glow eerily in this incredible infrared picture, which also unveils unexpected features in Saturn's atmosphere. This image serves as context for an observing program that will test the telescope's capacity to detect faint moons around the planet and its bright rings. Any newly discovered moons could help scientists put together a more complete picture of the current system of Saturn, as well as its past.

Space: Cosmology Space: Structures and Features Space: The Solar System
Published

Astrophysicists propose a new way of measuring cosmic expansion: Lensed gravitational waves      (via sciencedaily.com)     Original source 

The universe is expanding; we've had evidence of that for about a century. But just how quickly celestial objects are receding from each other is still up for debate.

Offbeat: Space Space: Cosmology Space: Structures and Features
Published

First 'ghost particle' image of Milky Way      (via sciencedaily.com)     Original source 

Scientists have revealed a uniquely different image of our galaxy by determining the galactic origin of thousands of neutrinos -- invisible 'ghost particles' which exist in great quantities but normally pass straight through Earth undetected. The neutrino-based image of the Milky Way is the first of its kind: a galactic portrait made with particles of matter rather than electromagnetic energy.

Offbeat: Space Space: Cosmology Space: Structures and Features
Published

Earliest strands of the cosmic web      (via sciencedaily.com)     Original source 

Galaxies are not scattered randomly across the universe. They gather together not only into clusters, but into vast interconnected filamentary structures with gigantic barren voids in between. This 'cosmic web' started out tenuous and became more distinct over time as gravity drew matter together.

Offbeat: Space Space: Structures and Features
Published

Unveiling the origins of merging black holes in galaxies like our own      (via sciencedaily.com)     Original source 

Black holes, some of the most captivating entities in the cosmos, possess an immense gravitational pull so strong that not even light can escape. The groundbreaking detection of gravitational waves in 2015, caused by the coalescence of two black holes, opened a new window into the universe. Since then, dozens of such observations have sparked the quest among astrophysicists to understand their astrophysical origins. Thanks to the POSYDON code's recent major advancements in simulating binary-star populations, a team of scientists predicted the existence of merging massive, 30 solar mass black hole binaries in Milky Way-like galaxies, challenging previous theories.

Offbeat: Space Space: Cosmology Space: Exploration Space: Structures and Features
Published

Gravitational waves from colossal black holes found using 'cosmic clocks'      (via sciencedaily.com)     Original source 

You can't see or feel it, but everything around you -- including your own body -- is slowly shrinking and expanding. It's the weird, spacetime-warping effect of gravitational waves passing through our galaxy. New results are the first evidence of the gravitational wave background -- a sort of soup of spacetime distortions pervading the entire universe and long predicted to exist by scientists.

Space: Structures and Features
Published

ALMA digs deeper into the mystery of planet formation      (via sciencedaily.com)     Original source 

An international research team has observed disks around 19 protostars with a very high resolution to search for the earliest signs of planet formation. This survey was motivated by the recent findings that planet formation may be well-underway in the more-evolved proto-planetary disks, but until now there had been no systematic study to search for signs of planet formation in younger protostellar systems.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Research breakthrough could be significant for quantum computing future      (via sciencedaily.com)     Original source 

Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.

Offbeat: General Offbeat: Space Space: Exploration Space: Structures and Features Space: The Solar System
Published

Life after death: Astronomers find a planet that shouldn't exist      (via sciencedaily.com)     Original source 

The star would have inflated up to 1.5 times the planet's orbital distance -- engulfing the planet in the process -- before shrinking to its current size at only one-tenth of that distance.

Offbeat: General Offbeat: Space Space: Cosmology Space: Exploration Space: Structures and Features
Published

Starlight and the first black holes: researchers detect the host galaxies of quasars in the early universe      (via sciencedaily.com)     Original source 

For the first time, the James Webb Space Telescope has revealed starlight from two massive galaxies hosting actively growing black holes -- quasars -- seen less than a billion years after the Big Bang.

Space: Structures and Features
Published

A surprise chemical find by ALMA may help detect and confirm protoplanets      (via sciencedaily.com)     Original source 

Scientists studying the protoplanetary disk around a young star have discovered the most compelling chemical evidence to date of the formation of protoplanets. The discovery will provide astronomers with an alternate method for detecting and characterizing protoplanets when direct observations or imaging are not possible.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: Quantum Computing
Published

Researchers make a quantum computing leap with a magnetic twist      (via sciencedaily.com)     Original source 

Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

First detection of crucial carbon molecule      (via sciencedaily.com)     Original source 

Scientists detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Toggle switch' can help quantum computers cut through the noise      (via sciencedaily.com)     Original source 

What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophotonics: Coupling light and matter      (via sciencedaily.com)     Original source 

Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Einstein and Euler put to the test at the edge of the Universe      (via sciencedaily.com)     Original source 

The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.

Offbeat: General Offbeat: Space Space: Astronomy Space: General Space: Structures and Features Space: The Solar System
Published

Molecular filament shielded young solar system from supernova      (via sciencedaily.com)     Original source 

Isotope ratios found in meteorites suggest that a supernova exploded nearby while the Sun and Solar System were still forming. But the blast wave from a supernova that close could have potentially destroyed the nascent Solar System. New calculations shows that a filament of molecular gas, which is the birth cocoon of the Solar System, aided the capture of the isotopes found in the meteorites, while acting as a buffer protecting the young Solar System from the nearby supernova blast.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Never-before-seen way to annihilate a star      (via sciencedaily.com)     Original source 

Astronomers studying a powerful gamma-ray burst, may have detected a never-before-seen way to destroy a star. Unlike most GRBs, which are caused by exploding massive stars or the chance mergers of neutron stars, astronomers have concluded that this GRB came instead from the collision of stars or stellar remnants in the jam-packed environment surrounding a supermassive black hole at the core of an ancient galaxy.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Detection of an echo emitted by our Galaxy's black hole 200 years ago      (via sciencedaily.com)     Original source 

An international team of scientists has discovered that Sagittarius A* (Sgr A*), the supermassive black hole at the centre of the Milky Way, emerged from a long period of dormancy some 200 years ago. The team, led by Frédéric Marin, a CNRS researcher at the Astronomical Strasbourg Observatory (CNRS/University of Strasbourg), has revealed the past awakening of this gigantic object, which is four million times more massive than the Sun. Their work is published in Nature on 21 June.