Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Engineering: Robotics Research, Physics: Quantum Computing
Published 'Amphibious' sensors make new, waterproof technologies possible



Researchers have demonstrated a technique for creating sensors that can function both in air and underwater. The approach paves the way for 'amphibious' sensors with applications ranging from wildlife monitoring to biomedical applications.
Published Stacked up against the rest



Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.
Published Towards smart cities: Predicting soil liquefaction risk using artificial intelligence



Soil liquefaction that results in infrastructure damage has long been a point of contention for urban planners and engineers. Accurately predicting the soil liquefaction risk of a region could help overcome this challenge. Accordingly, researchers applied artificial intelligence to generate soil liquefaction risk maps, superseding already published risk maps.
Published Researchers develop general framework for designing quantum sensors



Researchers have designed a protocol for harnessing the power of quantum sensors. The protocol could give sensor designers the ability to fine-tune quantum systems to sense signals of interest, creating sensors that are vastly more sensitive than traditional sensors.
Published Breaking new ground for computing technologies with electron-hole crystals



A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.
Published Shape-shifting 'transformer bots' inspired by origami



Inspired by the paper-folding art of origami, engineers have discovered a way to make a single plastic cubed structure transform into more than 1,000 configurations using only three active motors.
Published Robotics: Self-powered 'bugs' can skim across water to detect environmental data



Researchers have developed a self-powered 'bug' that can skim across the water, and they hope it will revolutionize aquatic robotics.
Published Researchers trap atoms, forcing them to serve as photonic transistors



Researchers have developed a means to realize cold-atom integrated nanophotonic circuits.
Published Optical fibers fit for the age of quantum computing



A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.
Published Atomic 'GPS' elucidates movement during ultrafast material transitions



Scientists have created the first-ever atomic movies showing how atoms rearrange locally within a quantum material as it transitions from an insulator to a metal. With the help of these movies, the researchers discovered a new material phase that settles a years-long scientific debate and could facilitate the design of new transitioning materials with commercial applications.
Published New understanding of fly behavior has potential application in robotics, public safety



Scientists have identified an automatic behavior in flies that helps them assess wind conditions -- its presence and direction -- before deploying a strategy to follow a scent to its source. The fact that they can do this is surprising -- can you tell if there's a gentle breeze if you stick your head out of a moving car? Flies aren't just reacting to an odor with a preprogrammed response: they are responding in context-appropriate manner. This knowledge potentially could be applied to train more sophisticated algorithms for scent-detecting drones to find the source of chemical leaks.
Published 'Kink state' control may provide pathway to quantum electronics



The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.
Published Quantum sensor for the atomic world



In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
Published Nonreciprocal interactions go nonlinear



Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.
Published Next-gen cooling system to help data centers become more energy efficient



Artificial intelligence (AI) is hot right now. Also hot: the data centers that power the technology. And keeping those centers cool requires a tremendous amount of energy. The problem is only going to grow as high-powered AI-based computers and devices become commonplace. That's why researchers are devising a new type of cooling system that promises to dramatically reduce energy demands.
Published Spin qubits go trampolining



Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published It's got praying mantis eyes



The praying mantis is one of the few insects with compound eyes and the ability to perceive 3D space. Engineers are replicating their visual systems to make machines see better.
Published Foam fluidics showcase lab's creative approach to circuit design



Engineers have shown that something as simple as the flow of air through open-cell foam can be used to perform digital computation, analog sensing and combined digital-analog control in soft textile-based wearable systems.
Published How pollution may remain in water after oil spill cleanups



The way oil drops break up at the water's surface means some oil may not get cleaned up after a spill.
Published Ant insights lead to robot navigation breakthrough



Have you ever wondered how insects are able to go so far beyond their home and still find their way? The answer to this question is not only relevant to biology but also to making the AI for tiny, autonomous robots. Drone-researchers felt inspired by biological findings on how ants visually recognize their environment and combine it with counting their steps in order to get safely back home. They have used these insights to create an insect-inspired autonomous navigation strategy for tiny, lightweight robots. It allows such robots to come back home after long trajectories, while requiring extremely little computation and memory (0.65 kiloByte per 100 m). In the future, tiny autonomous robots could find a wide range of uses, from monitoring stock in warehouses to finding gas leaks in industrial sites.