Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Engineering: Robotics Research, Physics: Quantum Computing
Published New technique could help build quantum computers of the future



Researchers have demonstrated a new method that could enable the large-scale manufacturing of optical qubits. The advance could bring us closer to a scalable quantum computer.
Published Trash-sorting robot mimics complex human sense of touch



Researchers are breaking through the difficulties of robotic recognition of various common, yet complex, items. Their layered sensor is equipped with material detection at the surface and pressure sensitivity at the bottom, with a porous middle layer sensitive to thermal changes. An efficient cascade classification algorithm rules out object types in order, from easy to hard, starting with simple categories like empty cartons before moving on to orange peels or scraps of cloth.
Published Switching nanomagnets using infrared lasers



Physicists have calculated how suitable molecules can be stimulated by infrared light pulses to form tiny magnetic fields. If this is also successful in experiments, the principle could be used in quantum computer circuits.
Published Four-legged, dog-like robot 'sniffs' hazardous gases in inaccessible environments



Nightmare material or truly man's best friend? A team of researchers equipped a dog-like quadruped robot with a mechanized arm that takes air samples from potentially treacherous situations, such as an abandoned building or fire. The robot dog walks samples to a person who screens them for potentially hazardous compounds.
Published Researchers create skin-inspired sensory robots to provide medical treatment



Scientists have created innovative soft robots equipped with electronic skins and artificial muscles, allowing them to sense their surroundings and adapt their movements in real-time.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published Liquid metal-based electronic logic device that mimics intelligent prey-capture mechanism of Venus flytrap



A research team has developed a liquid metal-based electronic logic device that mimics the intelligent prey-capture mechanism of Venus flytraps. Exhibiting memory and counting properties, the device can intelligently respond to various stimulus sequences without the need for additional electronic components. The intelligent strategies and logic mechanisms in the device provide a fresh perspective on understanding 'intelligence' in nature and offer inspiration for the development of 'embodied intelligence'.
Published Better farming through nanotechnology



Advanced technologies enable the controlled release of medicine to specific cells in the body. Scientists argue these same technologies must be applied to agriculture if growers are to meet increasing global food demands.
Published Novel diamond quantum magnetometer for ambient condition magnetoencephalography



A highly sensitive diamond quantum magnetometer utilizing nitrogen-vacancy centers can achieve millimeter-scale resolution magnetoencephalography (MEG). The novel magnetometer, based on continuous-wave optically detected magnetic resonance, marks a significant step towards realizing ambient condition MEG and other practical applications.
Published A technique for more effective multipurpose robots



MIT researchers developed a technique to combine robotics training data across domains, modalities, and tasks using generative AI models. They create a combined strategy from several different datasets that enables a robot to learn to perform new tasks in unseen environments.
Published Groundbreaking progress in quantum physics: How quantum field theories decay and fission



An international research team has sparked interest in the scientific community with results in quantum physics. In their current study, the researchers reinterpret the Higgs mechanism, which gives elementary particles mass and triggers phase transitions, using the concept of 'magnetic quivers.'
Published Enhancing nanofibrous acoustic energy harvesters with artificial intelligence



Scientists have employed artificial intelligence techniques to improve the design and production of nanofibers used in wearable nanofiber acoustic energy harvesters (NAEH). These acoustic devices capture sound energy from the environment and convert it into electrical energy, which can then be applied in useful devices, such as hearing aids.
Published The coldest lab in New York has new quantum offering



Physicists describe the successful creation of a molecular Bose-Einstein condensate (BEC). Made up of dipolar sodium-cesium molecules that were cooled with the help of microwave shielding to just 5 nanoKelvin and lasted for up to two seconds, the new molecular BEC will help scientists explore a number of different quantum phenomena, including new types of superfluidity, and enable the creation of quantum simulators to ecreate the enigmatic properties of complex materials, like solid crystals.
Published Designing environments that are robot-inclusive



To overcome issues associated with real-life testing, researchers successfully demonstrated the use of digital twin technology within robot simulation software in assessing a robot's suitability for deployment in simulated built environments.
Published AI-controlled stations can charge electric cars at a personal price



As more and more people drive electric cars, congestion and queues can occur when many people need to charge at the same time. A new study shows how AI-controlled charging stations, through smart algorithms, can offer electric vehicle users personalized prices, and thus minimize both price and waiting time for customers. But the researchers point to the importance of taking the ethical issues seriously, as there is a risk that the artificial intelligence exploits information from motorists.
Published The thinnest lens on Earth, enabled by excitons



Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.
Published Theoretical quantum speedup with the quantum approximate optimization algorithm



Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.
Published Study is step towards energy-efficient quantum computing in magnets



Researchers have managed to generate propagating spin waves at the nanoscale and discovered a novel pathway to modulate and amplify them. Their discovery could pave the way for the development of dissipation free quantum information technologies. As the spin waves do not involve electric currents these chips will be free from associated losses of energy. The rapidly growing popularity of artificial intelligence comes with an increasing desire for fast and energy efficient computing devices and calls for novel ways to store and process information. The electric currents in conventional devices suffer from losses of energy and subsequent heating of the environment.
Published Public have no difficulty getting to grips with an extra thumb, study finds



Researchers have shown that members of the public have little trouble in learning very quickly how to use a third thumb -- a controllable, prosthetic extra thumb -- to pick up and manipulate objects. The team tested the robotic device on a diverse range of participants, which they say is essential for ensuring new technologies are inclusive and can work for everyone.
Published 'Invisible tweezers' use robotics and acoustic energy to achieve what human hands cannot



Undergoing surgery is seldom a pleasant experience, and it can sometimes be highly invasive. Surgical procedures have evolved steadily over the centuries, growing with the knowledge of anatomy and biology. Innovative methods have also been bolstered with new tools, and a growth in the use of robotics since the 1980s has moved health care forward significantly.