Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists achieve more than 98% efficiency removing nanoplastics from water      (via sciencedaily.com)     Original source 

Linked to cardiovascular and respiratory diseases in people, nanoplastics continue to build up, largely unnoticed, in the world's bodies of water. The challenge remains to develop a cost-effective solution to get rid of nanoplastics while leaving clean water behind. That's where Mizzou comes in. Recently, researchers created a new liquid-based solution that eliminates more than 98% of these microscopic plastic particles from water.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy      (via sciencedaily.com)     Original source 

Scientists have made a groundbreaking discovery in the field of nanotechnology. They have developed a novel microscopy method that allows for the unprecedented visualization of nanostructures and their optical properties.

Environmental: General Geoscience: Geography Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The mother of all motion sensors      (via sciencedaily.com)     Original source 

Researchers have used silicon photonic microchip components to perform a quantum sensing technique called atom interferometry, an ultra-precise way of measuring acceleration. It is the latest milestone toward developing a kind of quantum compass for navigation when GPS signals are unavailable.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Why carbon nanotubes fluoresce when they bind to certain molecules      (via sciencedaily.com)     Original source 

Nanotubes can serve as biosensors. They change their fluorescence when they bind to certain molecules. Until now, it was unclear why. Researchers have gained new insights into the cause of the fluorescence.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General
Published

Innovative study unveils a new path in green chemistry      (via sciencedaily.com)     Original source 

Researchers have introduced a new advancement in the fight against climate change. Their study showcases a novel method for understanding the mechanisms of carbon dioxide re-utilization leading to fuels and chemicals. This work paves the road for the further optimization of this catalytic process driven by renewable electricity.

Engineering: Nanotechnology
Published

Precise stirring conditions key to optimizing nanostructure synthesis      (via sciencedaily.com)     Original source 

Stirring allows for homogenization and efficient gas exchange -- this fact has been known for decades. Controlling the stirring rate during the nanocluster synthesis is pivotal in achieving nanostructures with well-defined sizes, structures, optical properties, and stability.

Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

X-ray imagery of vibrating diamond opens avenues for quantum sensing      (via sciencedaily.com)     Original source 

Scientists at three research institutions capture the pulsing motion of atoms in diamond, uncovering the relationship between the diamond's strain and the behavior of the quantum information hosted within.

Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: General
Published

Soft gold enables connections between nerves and electronics      (via sciencedaily.com)     Original source 

Gold does not readily lend itself to being turned into long, thin threads. But researchers have now managed to create gold nanowires and develop soft electrodes that can be connected to the nervous system. The electrodes are soft as nerves, stretchable and electrically conductive, and are projected to last for a long time in the body.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Concept for efficiency-enhanced noble-metal catalysts      (via sciencedaily.com)     Original source 

The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.

Energy: Technology Engineering: Nanotechnology Physics: General
Published

Novel ultrafast electron microscopy technique advances understanding of processes applicable to brain-like computing      (via sciencedaily.com)     Original source 

A team developed a new microscopy technique that uses electrical pulses to track the nanosecond dynamics within a material that is known to form charge density waves. Controlling these waves may lead to faster and more energy-efficient electronics.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Stacked up against the rest      (via sciencedaily.com)     Original source 

Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.

Chemistry: General Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Sustainable and reversible 3D printing method uses minimal ingredients and steps      (via sciencedaily.com)     Original source 

A new 3D printing method developed by engineers is so simple that it uses a polymer ink and salt water solution to create solid structures. The work has the potential to make materials manufacturing more sustainable and environmentally friendly.

Computer Science: General Energy: Technology Engineering: Nanotechnology
Published

Pursuing the middle path to scientific discovery      (via sciencedaily.com)     Original source 

Scientists have made significant strides in understanding the properties of a ferroelectric material under an electric field. This breakthrough holds potential for advances in computer memory, lasers and sensors for ultraprecise measurements.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop general framework for designing quantum sensors      (via sciencedaily.com)     Original source 

Researchers have designed a protocol for harnessing the power of quantum sensors. The protocol could give sensor designers the ability to fine-tune quantum systems to sense signals of interest, creating sensors that are vastly more sensitive than traditional sensors.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Researchers identify unique phenomenon in Kagome metal      (via sciencedaily.com)     Original source 

A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.

Chemistry: Biochemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breaking new ground for computing technologies with electron-hole crystals      (via sciencedaily.com)     Original source 

A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Hair follicle models from the 3D printer      (via sciencedaily.com)     Original source 

Hair follicle infections are often difficult to treat because bacteria settle in the gap between hair and skin, where it is difficult for active substances to reach them. In order to investigate this scenario more closely in the laboratory, researchers have now developed a model with human hair follicles embedded in a matrix produced using 3D printing. In the future, this model can be used to test the effectiveness of new drug candidates against corresponding pathogens directly on human follicles.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical fibers fit for the age of quantum computing      (via sciencedaily.com)     Original source 

A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.

Energy: Batteries Engineering: Graphene Engineering: Nanotechnology
Published

Scientists work to build 'wind-up' sensors      (via sciencedaily.com)     Original source 

An international team of scientists has shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.