Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Environmental: Biodiversity, Physics: Quantum Computing
Published Distortion-free forms of structured light


Research offers a new approach to studying complex light in complex systems, such as transporting classical and quantum light through optical fiber, underwater channels, living tissue and other highly aberrated systems.
Published Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time


Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.
Published Global wetlands losses overestimated despite high losses in many regions


New analysis shows the U.S. has accounted for more wetland conversion and degradation than any other country. Its findings help better explain the causes and impacts of such losses and inform protection and restoration of wetlands.
Published A fossil fruit from California shows ancestors of coffee and potatoes survived cataclysm that killed the dinosaurs



The discovery of an 80-million-year-old fossil plant pushes back the known origins of lamiids to the Cretaceous, extending the record of nearly 40,000 species of flowering plants including modern-day staple crops like coffee, tomatoes, potatoes and mint.
Published Long-term restoration of a biodiversity hotspot hinges on getting seeds to the right place at the right time


New research shows that degraded savanna ecosystems can reap lasting benefits from a single seeding of native understory plants. Once a diverse understory of savanna plants became established, its long-term persistence was relatively unaffected by environmental factors -- with one exception. Higher temperatures during the height of the growing season were associated with poorer long-term survival among some species, indicating one threat posed by a warming climate.
Published Pacific Northwest heat dome tree damage more about temperature than drought, scientists say



Widespread tree scorch in the Pacific Northwest that became visible shortly after multiple days of record-setting, triple-digit temperatures in June 2021 was more attributable to heat than to drought conditions, researchers say.
Published Entangled atoms cross quantum network from one lab to another


Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.
Published Small isolated wetlands are pollution-catching powerhouses



Small isolated wetlands that are full for only part of the year are often the first to be removed for development or agriculture, but a new study shows that they can be twice as effective in protecting downstream lake or river ecosystems than if they were connected to them.
Published Researchers devise a new path toward 'quantum light'


Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.
Published Protected areas fail to safeguard more than 75% of global insect species


Insects play crucial roles in almost every ecosystem -- they pollinate more than 80% of plants and are a major source of food for thousands of vertebrate species -- but insect populations are collapsing around the globe, and they continue to be overlooked by conservation efforts. Protected areas can safeguard threatened species but only if these threatened species actually live within the areas we protect. A new study found that 76% of insect species are not adequately covered by protected areas.
Published Researchers take a step toward novel quantum simulators


If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.
Published New method to control electron spin paves the way for efficient quantum computers


Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.
Published Mixing between species reduces vulnerability to climate change


New research provides rare evidence that natural hybridization can reduce the risk of extinction of species threatened by climate change. Researchers have identified genes that enable Rainbowfish to adapt to climate variations across the Australia using environmental models to work out how much evolution will likely be required for populations to keep pace with future climate change.
Published UK's Overseas Territories at ongoing risk from wide range of invasive species


A new study has for the first time predicted which invasive species could pose a future threat to the UK's ecologically unique Overseas Territories.
Published A fairy-like robot flies by the power of wind and light


The loss of pollinators, such as bees, is a huge challenge for global biodiversity and affects humanity by causing problems in food production. Researchers have now developed the first passively flying robot equipped with artificial muscle. Could this artificial fairy be utilized in pollination?
Published Qubits on strong stimulants



In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.
Published Quantum physicists make major nanoscopic advance



In a new breakthrough, researchers have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This in turn, opens new doors for companies and others to exploit the technology commercially.
Published Scientists observe 'quasiparticles' in classical systems


Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.
Published No 'second law of entanglement' after all


When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.
Published Physical effect also valid in the quantum world


Physicists have experimentally proven that an important theorem of statistical physics applies to so-called 'Bose-Einstein condensates.' Their results now make it possible to measure certain properties of the quantum 'superparticles' and deduce system characteristics that would otherwise be difficult to observe.