Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Precision instrument bolsters efforts to find elusive dark energy      (via sciencedaily.com)     Original source 

Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.

Geoscience: Earth Science Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Space Paleontology: Climate Paleontology: General Space: General Space: Structures and Features Space: The Solar System
Published

Shocked quartz reveals evidence of historical cosmic airburst      (via sciencedaily.com)     Original source 

Researchers continue to expand the case for the Younger Dryas Impact hypothesis. The idea proposes that a fragmented comet smashed into the Earth's atmosphere 12,800 years ago, causing a widespread climatic shift that, among other things, led to the abrupt reversal of the Earth's warming trend and into an anomalous near-glacial period called the Younger Dryas.

Offbeat: General Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Surprising phosphate finding in NASA's OSIRIS-REx asteroid sample      (via sciencedaily.com)     Original source 

Early analysis of the asteroid Bennu sample returned by NASA's OSIRIS-REx mission has revealed dust rich in carbon, nitrogen, and organic compounds, all of which are essential components for life as we know it. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth. The magnesium-sodium phosphate found in the sample hints that the asteroid could have splintered off from an ancient, small, primitive ocean world.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

New evidence for how heat is transported below the sun's surface      (via sciencedaily.com)     Original source 

Solar physicists have revealed the interior structure of the sun's supergranules, a flow structure that transports heat from the sun's hidden interior to its surface. The researchers' analysis of the supergranules presents a challenge to the current understanding of solar convection.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Telltale greenhouse gases could signal alien activity      (via sciencedaily.com)     Original source 

If aliens modified a planet in their solar system to make it warmer, we'd be able to tell. A new study identifies the artificial greenhouse gases that would be giveaways of a terraformed planet.

Space: Exploration Space: General Space: The Solar System
Published

Marsquakes may help reveal whether liquid water exists underground on red planet      (via sciencedaily.com)     Original source 

If liquid water exists today on Mars, it may be too deep underground to detect with traditional methods used on Earth. But listening to earthquakes that occur on Mars -- or marsquakes -- could offer a new tool in the search.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

First of its kind detection made in striking new Webb image      (via sciencedaily.com)     Original source 

For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA's James Webb Space Telescope's Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area of this young, nearby star-forming region.

Offbeat: General Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Geologists expect Chang'e-6 lunar surface samples to contain volcanic rock and impact ejecta      (via sciencedaily.com)     Original source 

On June 25, China's Chang'e-6 (CE-6) lunar probe is set to return to Earth, carrying the first surface samples collected from the farside of the Moon. In anticipation of this historic event, scientists are publishing their predictions for the unique materials that may be found in the CE-6 samples.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Star clusters observed within a galaxy in the early Universe      (via sciencedaily.com)     Original source 

The history of how stars and galaxies came to be and evolved into the present day remains among the most challenging astrophysical questions to solve yet, but new research brings us closer to understanding it. New insights about young galaxies during the Epoch of Reionization have been revealed. Observations with the James Webb Space Telescope (JWST) of the galaxy Cosmic Gems arc (SPT0615-JD) have confirmed that the light of the galaxy was emitted 460 million years after the big bang. What makes this galaxy unique is that it is magnified through an effect called gravitational lensing, which has not been observed in other galaxies formed during that age.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Iron meteorites hint that our infant solar system was more doughnut than dartboard      (via sciencedaily.com)     Original source 

Iron meteorites are remnants of the metallic cores of the earliest asteroids in our solar system. Iron meteorites contain refractory metals, such as iridium and platinum, that formed near the sun but were transported to the outer solar system. New research shows that for this to have happened, the protoplanetary disk of our solar system had to have been doughnut-shaped because the refractory metals could not have crossed the large gaps in a target-shaped disk of concentric rings. The paper suggests that the refractory metals moved outward as the protoplanetary disk rapidly expanded, and were trapped in the outer solar system by Jupiter.

Offbeat: General Offbeat: Space Space: General Space: The Solar System
Published

Titan's lakes may be shaped by waves      (via sciencedaily.com)     Original source 

Geologists studied Titan's shorelines and showed through simulations that coastlines of the moon's methane- and ethane-filled seas have likely been shaped by waves. Until now, scientists have found indirect and conflicting signs of wave activity, based on Cassini images of Titan's surface.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

Jupiter's great red spot is not the same one Cassini observed in 1600s      (via sciencedaily.com)     Original source 

Jupiter's iconic Great Red Spot has persisted for at least 190 years and is likely a different spot from the one observed by the astronomer Giovanni Domenico Cassini in 1665, a new study reports. The Great Red Spot we see today likely formed because of an instability in the planet's intense atmospheric winds, producing a long, persistent atmospheric cell, the study also finds.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough may clear major hurdle for quantum computers      (via sciencedaily.com)     Original source 

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Energy: Alternative Fuels Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material puts eco-friendly methanol conversion within reach      (via sciencedaily.com)     Original source 

Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.

Computer Science: Quantum Computers Geoscience: Earth Science Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum entanglement measures Earth rotation      (via sciencedaily.com)     Original source 

Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A liquid crystal source of photon pairs      (via sciencedaily.com)     Original source 

Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.

Offbeat: General Offbeat: Space Space: Astronomy Space: General Space: Structures and Features Space: The Solar System
Published

Watery planets orbiting dead stars may be good candidates for studying life -- if they can survive long enough      (via sciencedaily.com)     Original source 

The small footprint and dim light of white dwarfs, remnants of stars that have burned through their fuel, may make excellent backdrops for studying planets with enough water to harbor life. The trick is spotting the shadow of a planet against a former star that has withered to a fraction of its size and finding that it's a planet that has kept its water oceans for billions of years even after riding out the star's explosive and violent final throes. A new study of the dynamics of white dwarf systems suggests that, in theory, some watery planets may indeed thread the celestial needles necessary to await discovery and closer scrutiny.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Mysterious mini-Neptunes      (via sciencedaily.com)     Original source 

This study discovered mini-Neptunes around four red dwarfs using observations from a global network of ground-based telescopes and the TESS space telescope. These four mini-Neptunes are close to their parent stars, and the three of them are likely to be in eccentric orbits.

Computer Science: Quantum Computers Geoscience: Earth Science Geoscience: Severe Weather Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum data assimilation: A quantum leap in weather prediction      (via sciencedaily.com)     Original source 

Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.