Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Environmental: Wildfires, Physics: Quantum Computing
Published New strategy reveals 'full chemical complexity' of quantum decoherence



Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.
Published Spike in dermatology visits for skin problems seen during summer of wildfires



New research suggests that air pollution may contribute to the development or worsening of skin conditions. The work points to the need to improve air quality to lower the burden of skin disease, especially for vulnerable communities.
Published Wildfires increasing across Eastern U.S.



Researchers examined 36 years of wildfire data in the eastern United States, focusing on fires that burned large areas. The overall trend for the region showed an increase in fire size, frequency, and shifts in seasonality and highlights a need for proactive management and individual preparedness for those living in this populous part of the country.
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.
Published A promising pairing: Scientists demonstrate new combination of materials for quantum science



For the first time, scientists publish results on a new chip composed of diamond and lithium niobate. The results demonstrate the combination as a promising candidate for quantum devices.
Published Wildfires also impact aquatic ecosystems



Researchers have shown that the effects of wildfires are not limited to terrestrial ecosystems. Aquatic ecosystems are also undergoing rapid changes. The study found that fire debris transforms lakes and other aquatic ecosystems, with implications for fisheries and water quality.
Published Twenty-year study confirms California forests are healthier when burned -- or thinned



A 20-year experiment in the Sierra Nevada confirms that different forest management techniques -- prescribed burning, restoration thinning or a combination of both -- are effective at reducing the risk of catastrophic wildfire in California. These treatments also improve forest health, making trees more resilient to stressors like drought and bark beetles, and they do not negatively impact plant or wildlife biodiversity within individual tree stands, the research found.
Published Hallmark quantum behavior in bouncing droplets



In a study that could help fill some holes in quantum theory, the team recreated a 'quantum bomb tester' in a classical droplet test.
Published Climate change will increase wildfire risk and lengthen fire seasons



Wildfires are some of the most destructive natural disasters in the country, threatening lives, destroying homes and infrastructure, and creating air pollution. In order to properly forecast and manage wildfires, managers need to understand wildfire risk and allocate resources accordingly.
Published Diamonds and rust help unveil 'impossible' quasi-particles



Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published Wildfires have erased two decades' worth of air quality gains in western United States



A new study concludes that wildfires originating in the western United States and Canada have erased air quality gains over the past two decades and caused an increase of premature deaths in fire-prone areas and downwind regions, primarily in the western U.S.
Published Strange burn: New research identifies unique patterns in Utah wildfires



Utah's variable topography produces a tremendous range of wildfire behavior, according to new research.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Ash can fertilize the oceans



Flames roared through Santa Barbara County in late 2017. UC Santa Barbara canceled classes, and the administration recommended donning an N95, long before the COVID pandemic made the mask a household item. Smoke and ash choked the air, but the Thomas Fire's effects weren't restricted to the land and sky. Huge amounts of ash settled into the oceans, leaving researchers to wonder what effect it might have on marine life.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.
Published What was thought of as noise, points to new type of ultrafast magnetic switching



Researchers discover a new type of ultrafast magnetic switching by investigating fluctuations that normally tend to interfere with experiments as noise.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published 'Strange metal' is strangely quiet in noise experiment



Experiments have provided the first direct evidence that electricity seems to flow through 'strange metals' in an unusual liquid-like form.
Published First comprehensive look at effects of 2020-2021 California megafires on terrestrial wildlife habitat



In 2020 and 2021, California experienced fire activity unlike anything recorded in the modern record. When the smoke cleared, the amount of burned forest totaled ten times more than the annual average going back to the late 1800s. We know that wildlife in western forests evolved with changing habitat and disturbances like wildfire. Each species responds differently, some benefiting from openings, others losing critical habitat. What we don't know is how increasing fire severity at large scales is impacting their habitat and survival, because many species are not adapted to these types of 'megafires.'