Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Volcanoes, Physics: Quantum Computing
Published Nanophotonics: Coupling light and matter



Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).
Published Effect of volcanic eruptions significantly underestimated in climate projections



Researchers have found that the cooling effect that volcanic eruptions have on Earth's surface temperature is likely underestimated by a factor of two, and potentially as much as a factor of four, in standard climate projections.
Published Combining twistronics with spintronics could be the next giant leap in quantum electronics



Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.
Published A Tongan volcano plume produced the most intense lightning rates ever detected



New research showed that the plume emitted by the Hunga Volcano eruption in 2022 created the highest lightning flash rates ever recorded on Earth, more than any storm ever documented.
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published For experimental physicists, quantum frustration leads to fundamental discovery



A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.
Published New technique in error-prone quantum computing makes classical computers sweat



Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.
Published Campi Flegrei volcano edges closer to possible eruption



The new study used a model of volcano fracturing to interpret patterns of earthquakes and ground uplift, and concluded that parts of the volcano had been stretched nearly to breaking point.
Published Breakthrough: Scientists develop artificial molecules that behave like real ones



Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published South Africa, India and Australia shared similar volcanic activity 3.5 billion years ago



The Daitari greenstone belt shares a similar geologic make-up when compared to the greenstones exposed in the Barberton and Nondweni areas of South Africa and those from the Pilbara Craton of north-western Australia.
Published Schrödinger's cat makes better qubits



Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.
Published New superconducting diode could improve performance of quantum computers and artificial intelligence



A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.
Published Researchers demonstrate secure information transfer using spatial correlations in quantum entangled beams of light



Researchers have demonstrated the principle of using spatial correlations in quantum entangled beams of light to encode information and enable its secure transmission.
Published Petit-spot volcanoes involve the deepest known submarine hydrothermal activity, possibly release CO2 and methane



Underwater volcanism and its hydrothermal activity play an important role in marine biogeochemical cycles, especially the carbon cycle. But the nature of hydrothermal activity at 'petit-spot' volcanoes have not been revealed at all. Now, scientists reveal that petit-spot hydrothermal activity occurs on the deepest seafloor known to date and could release carbon dioxide (CO2) and methane, which may have implications for the global carbon cycle.
Published The 'breath' between atoms -- a new building block for quantum technology



Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.
Published Understanding the tantalizing benefits of tantalum for improved quantum processors



Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits. The coherence time is a measure of how long a qubit retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in superconducting qubits makes them perform better, but no one has been able to determine why -- until now.
Published First X-ray of a single atom



Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.
Published Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons



Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).
Published Forging a dream material with semiconductor quantum dots



Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.
Published Snapshots of photoinjection



Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.