Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Volcanoes, Physics: Quantum Computing
Published Quantum scientists accurately measure power levels one trillion times lower than usual



Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.
Published Quantum matter breakthrough: Tuning density waves



Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.
Published Extinct offshore volcano could store gigatons of carbon dioxide



A new study concludes that an extinct volcano off the shore of Portugal could store as much as 1.2-8.6 gigatons of carbon dioxide, the equivalent of ~24-125 years of the country's industrial emissions. For context, in 2022 a total of 42.6 megatons (0.0426 gigatons) of carbon dioxide was removed from the atmosphere by international carbon capture and storage efforts, according to the Global CCS Institute. The new study suggests that carbon capture and storage in offshore underwater volcanoes could be a promising new direction for removal and storage of much larger volumes of the greenhouse gas from the atmosphere.
Published Eruption of Tonga underwater volcano found to disrupt satellite signals halfway around the world



Researchers found that the Hunga-Tonga eruption was associated with the formation of an equatorial plasma bubble in the ionosphere, a phenomenon associated with disruption of satellite-based communications. Their findings also suggest that a long-held atmospheric model should be revised.
Published Stretching metals at the atomic level allows researchers to create important materials for quantum, electronic, and spintronic applications



A University of Minnesota Twin Cities-led team has developed a first-of-its-kind breakthrough method that makes it easier to create high-quality metal oxide films that are important for various next generation applications such as quantum computing and microelectronics.
Published Uncovering universal physics in the dynamics of a quantum system



New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium.
Published Curved spacetime in a quantum simulator



The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.
Published With new experimental method, researchers probe spin structure in 2D materials for first time



In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.
Published Researcher uses artificial intelligence to discover new materials for advanced computing



Researchers have identified novel van der Waals (vdW) magnets using cutting-edge tools in artificial intelligence (AI). In particular, the team identified transition metal halide vdW materials with large magnetic moments that are predicted to be chemically stable using semi-supervised learning. These two-dimensional (2D) vdW magnets have potential applications in data storage, spintronics, and even quantum computing.
Published Physicists discover 'stacked pancakes of liquid magnetism'



Physicists have discovered stacked pancakes of 'liquid' magnetism that may account for the strange electronic behavior of some layered helical magnets.
Published Leaky-wave metasurfaces: A perfect interface between free-space and integrated optical systems



Researchers have developed a new class of integrated photonic devices -- 'leaky-wave metasurfaces' -- that convert light initially confined in an optical waveguide to an arbitrary optical pattern in free space. These are the first to demonstrate simultaneous control of all four optical degrees of freedom. Because they're so thin, transparent, and compatible with photonic integrated circuits, they can be used to improve optical displays, LIDAR, optical communications, and quantum optics.
Published Symmetric graphene quantum dots for future qubits



Quantum dots in semiconductors such as silicon or gallium arsenide have long been considered hot candidates for hosting quantum bits in future quantum processors. Scientists have now shown that bilayer graphene has even more to offer here than other materials. The double quantum dots they have created are characterized by a nearly perfect electron-hole-symmetry that allows a robust read-out mechanism -- one of the necessary criteria for quantum computing.
Published Quantum lidar prototype acquires real-time 3D images while fully submerged underwater



Researchers have demonstrated a prototype lidar system that uses quantum detection technology to acquire 3D images while submerged underwater. The high sensitivity of this system could allow it to capture detailed information even in extremely low-light conditions found underwater.
Published Researchers develop manual for engineering spin dynamics in nanomagnets



An international team of researchers has developed a comprehensive manual for engineering spin dynamics in nanomagnets -- an important step toward advancing spintronic and quantum-information technologies.
Published QuanÂtum comÂputer in reverse gear



Large numbers can only be factorized with a great deal of computational effort. Physicists are now providing a blueprint for a new type of quantum computer to solve the factorization problem, which is a cornerstone of modern cryptography.
Published Quantum entanglement of photons doubles microscope resolution



Using a "spooky" phenomenon of quantum physics, researchers have discovered a way to double the resolution of light microscopes.
Published Tunneling electrons



By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.
Published Scientists demonstrate unprecedented sensitivity in measuring time delay between two photons



A team of researchers has demonstrated the ultimate sensitivity allowed by quantum physics in measuring the time delay between two photons. This breakthrough has significant implications for a range of applications, including more feasible imaging of nanostructures, including biological samples, and nanomaterial surfaces, as well as quantum enhanced estimation based on frequency-resolved boson sampling in optical networks.
Published Scientists have full state of a quantum liquid down cold



A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.
Published Putting hydrogen on solid ground: Simulations with a machine learning model predict a new phase of solid hydrogen



Hydrogen, the most abundant element in the universe, is found everywhere from the dust filling most of outer space to the cores of stars to many substances here on Earth. This would be reason enough to study hydrogen, but its individual atoms are also the simplest of any element with just one proton and one electron.