Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene: Perfection is futile      (via sciencedaily.com) 

It has long been known that graphene has excellent electronic properties. However, it was unclear until now how stable these properties are. Are they destroyed by disturbances and additional effects, which are unavoidable in practice, or do they remain intact? Scientists have now succeeded in developing a comprehensive computer model of realistic graphene structures. It turned out that the desired effects are very stable. Even graphene pieces that are not quite perfect can be used well for technological applications.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Golden rules for building atomic blocks      (via sciencedaily.com) 

Physicists have developed a technique to precisely control the alignment of supermoiré lattices by using a set of golden rules, paving the way for the advancement of next generation moiré quantum matter.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum computer unveils atomic dynamics of light-sensitive molecules      (via sciencedaily.com) 

Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.

Biology: Zoology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Which radio waves disrupt the magnetic sense in migratory birds?      (via sciencedaily.com) 

Many songbirds use the earth's magnetic field as a guide during their migrations, but radiowaves interfere with this ability. A new study has found an upper bound for the frequency that disrupts the magnetic compass.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists use quantum device to slow down simulated chemical reaction 100 billion times      (via sciencedaily.com) 

Using a trapped-ion quantum computer, the research team witnessed the interference pattern of a single atom caused by a 'conical intersection'. Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum device generates single photons and encodes information      (via sciencedaily.com) 

A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Do measurements produce the reality they show us?      (via sciencedaily.com) 

The measurement values determined in sufficiently precise measurements of physical systems will vary based on the relation between the past and the future of a system determined by its interactions with the meter. This finding may explain why quantum experiments often produce paradoxical results that can contradict our common-sense idea of physical reality.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Sci­en­tists develop fermionic quan­tum pro­ces­sor      (via sciencedaily.com) 

Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: General
Published

Want to know how light works? Try asking a mechanic      (via sciencedaily.com) 

Physicists use a 350-year-old theorem that explains the workings of pendulums and planets to reveal new properties of light waves.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists simulate super diffusion on a quantum computer      (via sciencedaily.com) 

Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unlocking chaos: Ultracold quantum gas reveals insights into wave turbulence      (via sciencedaily.com) 

In the intricate realm of wave turbulence, where predictability falters and chaos reigns, a groundbreaking study has emerged. The new research explores the heart of wave turbulence using an ultracold quantum gas, revealing new insights that could advance our understanding of non-equilibrium physics and have significant implications for various fields.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching 'spin' on and off (and up and down) in quantum materials at room temperature      (via sciencedaily.com) 

Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.

Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Carbon-based quantum technology      (via sciencedaily.com) 

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop a unique quantum mechanical approach to determining metal ductility      (via sciencedaily.com) 

A team of scientists developed a new quantum-mechanics-based approach to predict metal ductility. The team demonstrated its effectiveness on refractory multi-principal-element alloys.

Chemistry: Organic Chemistry Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Arrays of quantum rods could enhance TVs or virtual reality devices      (via sciencedaily.com) 

Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Potential application of unwanted electronic noise in semiconductors      (via sciencedaily.com) 

Random telegraph noise (RTN) in semiconductors is typically caused by two-state defects. Two-dimensional (2D) van der Waals (vdW) layered magnetic materials are expected to exhibit large fluctuations due to long-range Coulomb interaction; importantly, which could be controlled by a voltage compared to 3D counterparts having large charge screening. Researchers reported electrically tunable magnetic fluctuations and RTN signal in multilayered vanadium-doped tungsten diselenide (WSe2) by using vertical magnetic tunneling junction devices. They identified bistable magnetic states in the 1/f2 RTNs in noise spectroscopy, which can be further utilized for switching devices via voltage polarity.

Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers use SPAD detector to achieve 3D quantum ghost imaging      (via sciencedaily.com) 

Researchers have reported the first 3D measurements acquired with quantum ghost imaging. The new technique enables 3D imaging on a single photon level, yielding the lowest photon dose possible for any measurement.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Energy: Technology Engineering: Nanotechnology Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum material exhibits 'non-local' behavior that mimics brain function      (via sciencedaily.com) 

New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.