Showing 20 articles starting at article 241

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Earthquakes, Physics: Quantum Computing

Return to the site home page

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Simulations of 'backwards time travel' can improve scientific experiments      (via sciencedaily.com)     Original source 

Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Ionic crystal generates molecular ions upon positron irradiation, finds new study      (via sciencedaily.com)     Original source 

The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography Geoscience: Geology Paleontology: General
Published

Plate tectonic surprise: Geologist unexpectedly finds remnants of a lost mega-plate      (via sciencedaily.com)     Original source 

Geologists have reconstructed a massive and previously unknown tectonic plate that was once one-quarter the size of the Pacific Ocean. The team had predicted its existence over 10 years ago based on fragments of old tectonic plates found deep in the Earth’s mantle. To the lead researchers surprise, she found that oceanic remnants on northern Borneo must have belonged to the long-suspected plate, which scientists have named Pontus. She has now reconstructed the entire plate in its full glory.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Geoscience: Earth Science Geoscience: Earthquakes
Published

AI-driven earthquake forecasting shows promise in trials      (via sciencedaily.com)     Original source 

A new attempt to predict earthquakes has raised hopes that artificial intelligence could one day be used to limit earthquakes’ impact on lives and economies. The AI algorithm correctly predicted 70% of earthquakes a week before they happened during a seven-month trial in China. The system is limited because the AI needs an extensive database and years of seismic recordings to train itself on, but researchers said the effort is nonetheless a milestone for AI-driven earthquake forecasting. Researchers will soon begin testing the system at other locations.

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.

Environmental: Water Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography Geoscience: Geology Geoscience: Oceanography
Published

Discovery of massive undersea water reservoir could explain New Zealand's mysterious slow earthquakes      (via sciencedaily.com)     Original source 

Researchers working to image New Zealand's Hikurangi earthquake fault have uncovered a sea's worth of water buried in the Earth's crust. The water was carried down by eroding volcanic rocks and is believed to be dampening the earthquake fault, allowing it to release most of the pent-up tectonic stress through harmless slow slip earthquakes.

Environmental: General Geoscience: Earthquakes Geoscience: Environmental Issues
Published

Tree rings reveal a new kind of earthquake threat to the Pacific Northwest, US      (via sciencedaily.com)     Original source 

Tree rings reveal a new kind of earthquake threat to the Pacific Northwest. These findings could have implications for seismic preparedness measures in the region.

Environmental: Water Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geology
Published

Exploring the effect of water on seismic wave attenuation in the upper mantle      (via sciencedaily.com)     Original source 

The mechanism facilitating the smooth movement of the oceanic lithosphere over the underlying asthenosphere (upper mantle) remains poorly understood. Recently, researchers from Japan investigated the effect of water on the seismic properties of olivine rocks, finding that water retention in the asthenosphere can induce sharp drops in shear wave velocity. This also explained other seismic changes observed at the lithosphere-asthenosphere boundary. These findings provide invaluable insights into the diverse seismic activities on Earth.

Environmental: Wildfires Geoscience: Earthquakes Geoscience: Severe Weather
Published

Largest historic fire death toll belongs to aftermath of 1923 Japan Earthquake      (via sciencedaily.com)     Original source 

Fires that raged in the days following the 1 September 1923 magnitude 7.9 Kant earthquake killed roughly 90% of the 105,000 people who perished in and around Tokyo, making it one of the deadliest natural disasters in history -- comparable to the number of people killed in the World War II atomic bombing of Hiroshima. The story of the conflagration, not well-known outside of Japan, holds important lessons for earthquake scientists, emergency response teams and city planners, according to a new article.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter      (via sciencedaily.com) 

Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.

Environmental: Water Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography
Published

Scientific ocean drilling discovers dynamic carbon cycling in the ultra-deep-water Japan Trench      (via sciencedaily.com)     Original source 

Hadal trenches, with their deepest locations situated in the so-called hadal zone, the deepest parts of the ocean in water depth >6km, are the least-explored environment on Earth, linking the Earth's surface and its deeper interior. An international team conducting deep-subsurface sampling in a hadal trench at high spatial resolution has revealed exciting insights on the carbon cycling in the trench sediment.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers make a significant step towards reliably processing quantum information      (via sciencedaily.com) 

Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.

Physics: General Physics: Optics Physics: Quantum Computing
Published

Valleytronics: Innovative way to store and process information up to room temperature      (via sciencedaily.com) 

Researchers have found a way to maintain valley polarization at room temperature using novel materials and techniques.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning contributes to better quantum error correction      (via sciencedaily.com) 

Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Atomically-precise quantum antidots via vacancy self-assembly      (via sciencedaily.com) 

Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Deriving the fundamental limit of heat current in quantum mechanical many-particle systems      (via sciencedaily.com) 

Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.

Chemistry: Inorganic Chemistry Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Energy: Technology Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Better cybersecurity with new material      (via sciencedaily.com) 

Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.