Showing 20 articles starting at article 301

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Earthquakes, Physics: Quantum Computing

Return to the site home page

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of quantum bit in semiconductor nanostructures      (via sciencedaily.com) 

Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.

Energy: Technology Physics: Quantum Computing Physics: Quantum Physics
Published

'Quantum avalanche' explains how nonconductors turn into conductors      (via sciencedaily.com)     Original source 

The study takes a new approach to answer a long-standing mystery about insulator-to-metal transitions.

Geoscience: Earthquakes Geoscience: Geology
Published

What can central Utah's earthquake 'swarms' reveal about the West's seismicity?      (via sciencedaily.com)     Original source 

Much of central Utah's seismic activity comes in groups of small earthquakes. A study by seismologists examines 2,300 quakes occurring 40 'swarms' dating back to 1981, opening a window into Earth's crust in a geothermally active area.

Biology: Microbiology Engineering: Nanotechnology Physics: Quantum Computing Physics: Quantum Physics
Published

Detection of bacteria and viruses with fluorescent nanotubes      (via sciencedaily.com) 

The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.

Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics      (via sciencedaily.com) 

Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.

Physics: Quantum Computing Physics: Quantum Physics
Published

Theory for superfluid helium confirmed      (via sciencedaily.com) 

Researchers have achieved a groundbreaking milestone in studying how vortices move in these quantum fluids. A new study of vortex ring motion in superfluid helium provides crucial evidence supporting a recently developed theoretical model of quantized vortices.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers establish criterion for nonlocal quantum behavior in networks      (via sciencedaily.com) 

A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

New superconductors can be built atom by atom      (via sciencedaily.com) 

The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.

Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: The Solar System
Published

Despite doubts from quantum physicists: Einstein's theory of relativity reaffirmed      (via sciencedaily.com)     Original source 

One of the most basic assumptions of fundamental physics is that the different properties of mass -- weight, inertia and gravitation -- always remain the same in relation to each other. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation. This inconsistency between Einstein's gravitational theory and modern quantum theory is the reason why ever more precise tests of the equivalence principle are particularly important. A team has now succeeded in proving with 100 times greater accuracy that passive and active gravitational mass are always equivalent -- regardless of the particular composition of the respective masses.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling signal routing in quantum information processing      (via sciencedaily.com)     Original source 

Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists work to prevent information loss in quantum computing      (via sciencedaily.com)     Original source 

Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.

Physics: Quantum Computing
Published

Researchers make a surprising discovery about the magnetic interactions in a Kagome layered topological magnet      (via sciencedaily.com) 

A team conducted an in-depth investigation of the magnetism of TbMn6Sn6, a Kagome layered topological magnet. They were surprised to find that the magnetic spin reorientation in TbMn6Sn6 occurs by generating increasing numbers of magnetically isotropic ions as the temperature increases.

Mathematics: Modeling Physics: Quantum Computing
Published

Machine learning takes materials modeling into new era      (via sciencedaily.com) 

The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies. Researchers have now pioneered a machine learning-based simulation method that supersedes traditional electronic structure simulation techniques. Their Materials Learning Algorithms (MALA) software stack enables access to previously unattainable length scales.

Engineering: Nanotechnology Physics: Quantum Computing
Published

Researchers grow precise arrays of nanoLEDs      (via sciencedaily.com) 

A new platform enables researchers to 'grow' halide perovskite nanocrystals with precise control over the location and size of each individual crystal, integrating them into nanoscale light-emitting diodes.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Finding the flux of quantum technology      (via sciencedaily.com)     Original source 

We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.

Geoscience: Earthquakes Geoscience: Geology
Published

Earth's Inner Core: Earth's solid metal sphere is 'textured'      (via sciencedaily.com)     Original source 

Scientists used seismic data discovered Earth's inner core displays a variety of textures that it acquired will it formed from within the fluid outer core. The data set was generated over the past 27 years by a network of seismometers set up to enforce the nuclear test ban treaty.

Geoscience: Earthquakes Geoscience: Geology
Published

Water storage capacity in oceanic crust slabs increases with age, researchers find      (via sciencedaily.com)     Original source 

An international research team has discovered that a subduction zone's age affects the ability for it to recycle water between the Earth's surface and its inner layers. The more mature the subduction zone, the bigger the water storage capacity.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes Paleontology: Climate
Published

Research reveals sources of CO2 from Aleutian-Alaska Arc volcanoes      (via sciencedaily.com)     Original source 

Scientists have wondered what happens to the organic and inorganic carbon that Earth's Pacific Plate carries with it as it slides into the planet's interior along the volcano-studded Ring of Fire. A new study suggests a notable amount of such subducted carbon returns to the atmosphere rather than traveling deep into Earth's mantle.

Geoscience: Earthquakes Geoscience: Landslides Mathematics: Statistics
Published

Geologists are using artificial intelligence to predict landslides      (via sciencedaily.com)     Original source 

Many factors influence where a landslide will occur, including the shape of the terrain, its slope and drainage areas, the material properties of soil and bedrock, and environmental conditions like climate, rainfall, hydrology and ground motion resulting from earthquakes. Geologists have developed a new technique that uses artificial intelligence to better predict where and why landslides may occur could bolster efforts to protect lives and property in some of the world's most disaster-prone areas. The new method improves the accuracy and interpretability of AI-based machine-learning techniques, requires far less computing power and is more broadly applicable than traditional predictive models.

Geoscience: Earthquakes Geoscience: Geology Paleontology: General
Published

Researchers unearth the mysteries of how Turkey's East Anatolian fault formed      (via sciencedaily.com)     Original source 

An international team has, for the first time, accurately determined the age of the East Anatolian fault, allowing geologists to learn more about its seismic history and tendency to produce earthquakes.