Showing 20 articles starting at article 381

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Geology, Physics: Quantum Computing

Return to the site home page

Physics: Quantum Computing Physics: Quantum Physics
Published

How atomic nuclei vibrate      (via sciencedaily.com) 

Using ultra-high-precision laser spectroscopy on a simple molecule, a group of physicists has measured the wave-like vibration of atomic nuclei with an unprecedented level of precision. The physicists report that they can thus confirm the wave-like movement of nuclear material more precisely that ever before and that they have found no evidence of any deviation from the established force between atomic nuclei.

Engineering: Graphene Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists caught Hofstadter's butterfly in one of the most ancient materials on Earth      (via sciencedaily.com) 

Researchers have revisited one of the most ancient materials on Earth -- graphite, and discovered new physics that has eluded the field for decades.

Archaeology: General Ecology: Invasive Species Geoscience: Geology Paleontology: Fossils Paleontology: General
Published

Missing island explains how endemic species on the Miyako Islands emerged      (via sciencedaily.com)     Original source 

Miyako Islands are home to various native species of snake and lizards. How these species came to call these islands home has long puzzled scientists. A group of researchers have compiled the latest geological and biological data, proposing that an island once facilitated migration between Okinawa and Miyako Islands.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of quantum bit in semiconductor nanostructures      (via sciencedaily.com) 

Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.

Energy: Technology Physics: Quantum Computing Physics: Quantum Physics
Published

'Quantum avalanche' explains how nonconductors turn into conductors      (via sciencedaily.com)     Original source 

The study takes a new approach to answer a long-standing mystery about insulator-to-metal transitions.

Geoscience: Earthquakes Geoscience: Geology
Published

What can central Utah's earthquake 'swarms' reveal about the West's seismicity?      (via sciencedaily.com)     Original source 

Much of central Utah's seismic activity comes in groups of small earthquakes. A study by seismologists examines 2,300 quakes occurring 40 'swarms' dating back to 1981, opening a window into Earth's crust in a geothermally active area.

Biology: Microbiology Engineering: Nanotechnology Physics: Quantum Computing Physics: Quantum Physics
Published

Detection of bacteria and viruses with fluorescent nanotubes      (via sciencedaily.com) 

The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.

Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics      (via sciencedaily.com) 

Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.

Physics: Quantum Computing Physics: Quantum Physics
Published

Theory for superfluid helium confirmed      (via sciencedaily.com) 

Researchers have achieved a groundbreaking milestone in studying how vortices move in these quantum fluids. A new study of vortex ring motion in superfluid helium provides crucial evidence supporting a recently developed theoretical model of quantized vortices.

Ecology: Endangered Species Ecology: Extinction Ecology: General Environmental: Ecosystems Geoscience: Geology
Published

In Florida, endangered coral finds a way to blossom      (via sciencedaily.com)     Original source 

In a new study, researchers have found that the restoration efforts of the critically endangered species elkhorn coral depend largely on the animal's location, microbiome, and the right conditions to provide an abundance of food.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers establish criterion for nonlocal quantum behavior in networks      (via sciencedaily.com) 

A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

New superconductors can be built atom by atom      (via sciencedaily.com) 

The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.

Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: The Solar System
Published

Despite doubts from quantum physicists: Einstein's theory of relativity reaffirmed      (via sciencedaily.com)     Original source 

One of the most basic assumptions of fundamental physics is that the different properties of mass -- weight, inertia and gravitation -- always remain the same in relation to each other. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation. This inconsistency between Einstein's gravitational theory and modern quantum theory is the reason why ever more precise tests of the equivalence principle are particularly important. A team has now succeeded in proving with 100 times greater accuracy that passive and active gravitational mass are always equivalent -- regardless of the particular composition of the respective masses.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling signal routing in quantum information processing      (via sciencedaily.com)     Original source 

Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists work to prevent information loss in quantum computing      (via sciencedaily.com)     Original source 

Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.

Geoscience: Environmental Issues Geoscience: Geology Paleontology: Climate Paleontology: General
Published

Crawford Lake, Canada, chosen as the primary marker to identify the start of the Anthropocene epoch      (via sciencedaily.com)     Original source 

An international team of researchers has chosen the location which best represents the beginnings of what could be a new geological epoch, the Anthropocene. The Anthropocene Working Group have put forward Crawford Lake, in Canada, as a Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene. A GSSP is an internationally agreed-upon reference point to show the start of a new geological period or epoch in layers of rock that have built up through the ages.

Geoscience: Geology Paleontology: Fossils Paleontology: General
Published

Scientists discover 36-million-year geological cycle that drives biodiversity      (via sciencedaily.com)     Original source 

Movement in the Earth's tectonic plates indirectly triggers bursts of biodiversity in 36 million-year cycles by forcing sea levels to rise and fall, new research has shown.

Ecology: Endangered Species Geoscience: Geology Paleontology: Climate Paleontology: General
Published

Global cooling caused diversity of species in orchids, confirms study      (via sciencedaily.com)     Original source 

Research shows global cooling of the climate 10 million years ago led to an explosion of diversity in terrestrial orchids.

Physics: Quantum Computing
Published

Researchers make a surprising discovery about the magnetic interactions in a Kagome layered topological magnet      (via sciencedaily.com) 

A team conducted an in-depth investigation of the magnetism of TbMn6Sn6, a Kagome layered topological magnet. They were surprised to find that the magnetic spin reorientation in TbMn6Sn6 occurs by generating increasing numbers of magnetically isotropic ions as the temperature increases.

Mathematics: Modeling Physics: Quantum Computing
Published

Machine learning takes materials modeling into new era      (via sciencedaily.com) 

The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies. Researchers have now pioneered a machine learning-based simulation method that supersedes traditional electronic structure simulation techniques. Their Materials Learning Algorithms (MALA) software stack enables access to previously unattainable length scales.