Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Dinosaurs, Physics: Quantum Computing
Published How atomic nuclei vibrate


Using ultra-high-precision laser spectroscopy on a simple molecule, a group of physicists has measured the wave-like vibration of atomic nuclei with an unprecedented level of precision. The physicists report that they can thus confirm the wave-like movement of nuclear material more precisely that ever before and that they have found no evidence of any deviation from the established force between atomic nuclei.
Published Scientists caught Hofstadter's butterfly in one of the most ancient materials on Earth


Researchers have revisited one of the most ancient materials on Earth -- graphite, and discovered new physics that has eluded the field for decades.
Published New archosaur species shows that precursor of dinosaurs and pterosaurs was armored



Researchers have described a new species of armored reptile that lived near the time of the first appearance of dinosaurs. With bony plates on its backbone, this archosaur fossil reveals that armor was a boomerang trait in the story of dinosaur and pterosaur evolution: the group's ancestors were armored, but this characteristic was lost and then independently re-evolved multiple times later among specialized dinosaurs like ankylosaurs, stegosaurs, and others.
Published A new type of quantum bit in semiconductor nanostructures


Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.
Published 'Quantum avalanche' explains how nonconductors turn into conductors



The study takes a new approach to answer a long-standing mystery about insulator-to-metal transitions.
Published Detection of bacteria and viruses with fluorescent nanotubes


The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.
Published Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics


Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.
Published Unusual fossil shows rare evidence of a mammal attacking a dinosaur



Scientists have described an unusual fossil from around 125 million years ago in China that shows a dramatic moment in time when a carnivorous mammal attacked a larger plant-eating dinosaur. The two animals are locked in mortal combat, and it's among the first evidence to show actual predatory behavior by a mammal on a dinosaur. The fossil's presence challenges the view that dinosaurs had few threats from their mammal contemporaries during the Cretaceous, when dinosaurs were the dominant animals.
Published Theory for superfluid helium confirmed


Researchers have achieved a groundbreaking milestone in studying how vortices move in these quantum fluids. A new study of vortex ring motion in superfluid helium provides crucial evidence supporting a recently developed theoretical model of quantized vortices.
Published Researchers establish criterion for nonlocal quantum behavior in networks


A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.
Published New superconductors can be built atom by atom


The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.
Published Despite doubts from quantum physicists: Einstein's theory of relativity reaffirmed



One of the most basic assumptions of fundamental physics is that the different properties of mass -- weight, inertia and gravitation -- always remain the same in relation to each other. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation. This inconsistency between Einstein's gravitational theory and modern quantum theory is the reason why ever more precise tests of the equivalence principle are particularly important. A team has now succeeded in proving with 100 times greater accuracy that passive and active gravitational mass are always equivalent -- regardless of the particular composition of the respective masses.
Published Controlling signal routing in quantum information processing



Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.
Published Physicists work to prevent information loss in quantum computing



Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.
Published Researchers make a surprising discovery about the magnetic interactions in a Kagome layered topological magnet


A team conducted an in-depth investigation of the magnetism of TbMn6Sn6, a Kagome layered topological magnet. They were surprised to find that the magnetic spin reorientation in TbMn6Sn6 occurs by generating increasing numbers of magnetically isotropic ions as the temperature increases.
Published Machine learning takes materials modeling into new era


The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies. Researchers have now pioneered a machine learning-based simulation method that supersedes traditional electronic structure simulation techniques. Their Materials Learning Algorithms (MALA) software stack enables access to previously unattainable length scales.
Published Researchers grow precise arrays of nanoLEDs


A new platform enables researchers to 'grow' halide perovskite nanocrystals with precise control over the location and size of each individual crystal, integrating them into nanoscale light-emitting diodes.
Published Fossils reveal how ancient birds molted their feathers -- which could help explain why ancestors of modern birds survived when all the other dinosaurs died



Birds are the only group of dinosaurs that survived the asteroid-induced mass extinction 66 million years ago. But not all the birds alive at the time made it. Why the ancestors of modern birds lived while so many of their relatives died has been a mystery that paleontologists have been trying to solve for decades. Two new studies point to one possible factor: the differences between how modern birds and their ancient cousins molt their feathers.
Published Finding the flux of quantum technology



We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.
Published Research breakthrough could be significant for quantum computing future



Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.