Showing 20 articles starting at article 1141

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: General, Physics: Quantum Computing

Return to the site home page

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Chemistry: General
Published

SCENTinel 1.1, second iteration of Monell's rapid smell test, discriminates between smell loss and smell distortions      (via sciencedaily.com) 

A research team showed that the smell test SCENTinel 1.1 can successfully discriminate between different types of smell disorders. SCENTinel 1.1 can rapidly identify parosmia, the distorted perception of odors.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Chemistry: General Chemistry: Inorganic Chemistry Offbeat: Computers and Math Physics: General
Published

Viable superconducting material created, say researchers      (via sciencedaily.com) 

Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Enhancing at-home COVID tests with glow-in-the dark materials      (via sciencedaily.com) 

Researchers are using glow-in-the-dark materials to enhance and improve rapid COVID-19 home tests.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Two-dimensional quantum freeze      (via sciencedaily.com) 

Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.

Chemistry: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits      (via sciencedaily.com) 

Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.

Chemistry: General Energy: Batteries Energy: Technology
Published

Extreme fast charging capability in lithium-ion batteries      (via sciencedaily.com) 

Lithium-ion batteries dominate among energy storage devices and are the battery of choice for the electric vehicle industry. Improving battery performance is a constant impetus to current research in this field. Towards this end, a group of researchers has synthesized a lithium borate-type aqueous polyelectrolyte binder for graphite anodes. Their new binder helped improve Li-ion diffusion and lower impedance compared to conventional batteries.

Biology: Marine Chemistry: General Chemistry: Inorganic Chemistry Ecology: Sea Life Environmental: Ecosystems
Published

Coral-friendly sunscreen provides better UV protection than existing options      (via sciencedaily.com) 

Researchers have developed a prototype for coral-reef-friendly sunscreens by using polymerization to create large molecules that still block UV radiation but are too big to penetrate our skin, coral, and algae. The polymeric UV filter was more effective at preventing sunburn in mice than existing sunscreens.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum chemistry: Molecules caught tunneling      (via sciencedaily.com) 

Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.

Chemistry: General Geoscience: Geology
Published

New study could help pinpoint hidden helium gas fields -- and avert a global supply crisis      (via sciencedaily.com) 

Helium -- essential for many medical and industrial processes -- is in critically short supply worldwide. Production is also associated with significant carbon emissions, contributing to climate change. This study provides a new concept in gas field formation to explain why, in rare places, helium accumulates naturally in high concentrations just beneath the Earth's surface. The findings could help locate new reservoirs of carbon-free helium -- and potentially also hydrogen.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Environmental Issues
Published

Sustainable process for the production of vanillin from lignin makes further progress      (via sciencedaily.com) 

The demand for vanillin vastly outstrips the natural resources of this flavoring agent. A chemical process is thus used to produce the required large quantities of vanillin from petroleum, which is far less expensive than obtaining the substance from fermented genuine vanilla pods. Another alternative is to make vanillin from lignin, a waste product of the wood pulping industry. A team has now managed to further enhance their method of electrochemical production of vanillin from lignin in that they employ a 'green' oxidation method for this purpose.

Chemistry: General
Published

Scientists synthesize cerium mineral which holds promise for biomedical research      (via sciencedaily.com) 

Geoscientists have developed a cheap and environmentally friendly method for the synthesis of cerianite, a rare earth mineral which holds promise for the treatment of diseases associated with inflammation, including cancer.

Chemistry: General Chemistry: Organic Chemistry
Published

Degrading modified proteins could treat Alzheimer's, other 'undruggable' diseases      (via sciencedaily.com) 

Certain diseases, including Alzheimer's, are currently considered 'undruggable' because traditional small molecule drugs can't interfere with the proteins responsible for the illnesses. But a new technique that specifically targets and breaks apart certain proteins -- rather than just interfering with them -- may offer a pathway toward treatment. Researchers have now designed a compound that targets and breaks down a post-translationally modified protein closely associated with Alzheimer's disease.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Environmental Issues
Published

New superacid converts harmful compounds into sustainable chemicals      (via sciencedaily.com) 

Researchers have succeeded in producing very special catalysts, known as 'Lewis superacids', which can be used to break strong chemical bonds and speed up reactions. The production of these substances has, until now, proven extremely difficult. The chemists' discovery enables non-biodegradable fluorinated hydrocarbons, similar to Teflon, and possibly even climate-damaging greenhouse gases, such as sulphur hexafluoride, to be converted back into sustainable chemicals.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Chaos on the nanometer scale      (via sciencedaily.com) 

Chaotic behavior is typically known from large systems: for example, from weather, from asteroids in space that are simultaneously attracted by several large celestial bodies, or from swinging pendulums that are coupled together. On the atomic scale, however, one does normally not encounter chaos -- other effects predominate. Now scientists have been able to detect clear indications of chaos on the nanometer scale -- in chemical reactions on tiny rhodium crystals.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material may offer key to solving quantum computing issue      (via sciencedaily.com) 

A new form of heterostructure of layered two-dimensional (2D) materials may enable quantum computing to overcome key barriers to its widespread application, according to an international team of researchers.