Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Physics: Quantum Computing
Published New sustainable method for creating organic semiconductors



Researchers have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics such as solar cells, artificial neurons, and soft sensors. The findings pave the way for future sustainable technology.
Published New reagent improves the process of making sulfur-containing compounds that may be used in medicines



Researchers describe their development of a new reagent that allows a more efficient approach to make sulfoximines, sulfonimidoyl fluorides and sulfonimidamides that may be used in medicines.
Published Scientists advance affordable, sustainable solution for flat-panel displays and wearable tech



Scientists have developed 'supramolecular ink,' a new 3D-printable OLED (organic light-emitting diode) material made of inexpensive, Earth-abundant elements instead of costly scarce metals. The advance could enable more affordable and environmentally sustainable OLED flat-panel displays as well as 3D-printable wearable technologies and lighting.
Published Deepwater Horizon oil spill study could lead to overhaul of cleanup processes worldwide



New research could lead to major improvements in marine oil spill cleanup processes. The innovative study assessed the impact of the Deepwater Horizon oil spill on microscopic seawater bacteria that perform a significant role in ecosystem functioning.
Published New research sheds light on a phenomenon known as 'false vacuum decay'



Scientists have produced the first experimental evidence of vacuum decay.
Published Groundbreaking discovery enables cost-effective and eco-friendly green hydrogen production



A research team has developed a novel catalyst for the high-efficiency and stable production of high-purity green hydrogen.
Published Towards the quantum of sound



A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.
Published DNA becomes our 'hands' to construct advanced nanoparticle materials



A new paper describes a significant leap forward in assembling polyhedral nanoparticles. The researchers introduce and demonstrate the power of a novel synthetic strategy that expands possibilities in metamaterial design. These are the unusual materials that underpin 'invisibility cloaks' and ultrahigh-speed optical computing systems.
Published Chemical synthesis: New strategy for skeletal editing on pyridines



A team has introduced a strategy for converting carbon-nitrogen atom pairs in a frequently used ring-shaped compound into carbon-carbon atom pairs. The method has potential in the quest for active ingredients for new drugs, for example.
Published Lighting the path: Exploring exciton binding energies in organic semiconductors



Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.
Published Next-generation batteries could go organic, cobalt-free for long-lasting power



In the switch to 'greener' energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt -- a metal whose extraction has high environmental and societal costs. Now, researchers in report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.
Published Efficiently moving urea out of polluted water is coming to reality



Researchers have developed a material to remove urea from water and potentially convert it into hydrogen gas. By building these materials of nickel and cobalt atoms with carefully tailored electronic structures, the group has unlocked the potential to enable these transition metal oxides and hydroxides to selectively oxidize urea in an electrochemical reaction. The team's findings could help use urea in waste streams to efficiently produce hydrogen fuel through the electrolysis process, and could be used to sequester urea from water, maintaining the long-term sustainability of ecological systems, and revolutionizing the water-energy nexus.
Published Cobalt-free batteries could power cars of the future



A new battery material could offer a more sustainable way to power electric cars. The lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel.
Published Chemists create a 2D heavy fermion



Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.
Published Higher measurement accuracy opens new window to the quantum world



A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).
Published Let it glow: Scientists develop new approach to detect 'forever chemicals' in water



Researchers have created a new way to detect 'forever chemical' pollution in water, via a luminescent sensor.
Published Long live the graphene valley state



Researchers found evidence that bilayer graphene quantum dots may host a promising new type of quantum bit based on so-called valley states.
Published Artificial 'power plants' harness energy from wind and rain



Fake plants are moving into the 21st century! Researchers developed literal 'power plants' -- tiny, leaf-shaped generators that create electricity from a blowing breeze or falling raindrops. The team tested the energy harvesters by incorporating them into artificial plants.
Published Study reveals a reaction at the heart of many renewable energy technologies



Chemists have mapped how proton-coupled electron transfers happen at the surface of an electrode. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.
Published Squishy, metal-free magnets to power robots and guide medical implants



'Soft robots,' medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism -- thanks to a metal-free magnetic gel developed by researchers. Carbon-based, magnetic molecules are chemically bonded to the molecular network of a gel, creating a flexible, long-lived magnet for soft robotics.