Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Quantum Computing
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing



Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Learning to forget -- a weapon in the arsenal against harmful AI



With the AI summit well underway, researchers are keen to raise the very real problem associated with the technology -- teaching it how to forget.
Published Reverse engineering Jackson Pollock



Researchers combined physics and machine learning to develop a new 3D-printing technique that can quickly create complex physical patterns -- including replicating a segment of a Pollock painting -- by leveraging the same natural fluid instability that Pollock used in his work.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers



Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.
Published Robot stand-in mimics movements in VR



Researchers have developed a souped-up telepresence robot that responds automatically and in real-time to a remote user's movements and gestures made in virtual reality.
Published Controlling waves in magnets with superconductors for the first time



Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.
Published A superatomic semiconductor sets a speed record



The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Published Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4



The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.
Published Major milestone achieved in new quantum computing architecture



Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published Engineers develop breakthrough 'robot skin'



Smart, stretchable and highly sensitive, a new soft sensor opens the door to a wide range of applications in robotics and prosthetics. When applied to the surface of a prosthetic arm or a robotic limb, the sensor skin provides touch sensitivity and dexterity, enabling tasks that can be difficult for machines such as picking up a piece of soft fruit. The sensor is also soft to the touch, like human skin, which helps make human interactions safer and more lifelike.
Published Physicists simulate interacting quasiparticles in ultracold quantum gas



In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published 'Dim-witted' pigeons use the same principles as AI to solve tasks



A new study provides evidence that pigeons tackle some problems just as artificial intelligence would -- allowing them to solve difficult tasks that would vex humans.
Published How quantum light 'sees' quantum sound



Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.
Published Plant-based materials give 'life' to tiny soft robots



A team of researchers has created smart, advanced materials that will be the building blocks for a future generation of soft medical microrobots. These tiny robots have the potential to conduct medical procedures, such as biopsy, and cell and tissue transport, in a minimally invasive fashion.
Published Simulating cold sensation without actual cooling



The perception of persistent thermal sensations, such as changes in temperature, tends to gradually diminish in intensity as our bodies become accustomed to the temperature. This phenomenon leads to a shift in our perception of temperature when transitioning between different scenes in a virtual environment. Researchers have now developed a technology to generate a virtual cold sensation via a non-contact method without physically altering the skin temperature.
Published Researchers demonstrate a high-speed electrical readout method for graphene nanodevices



Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices.
Published International team develops novel DNA nano engine



An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.