Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

'Inkable' nanomaterial promises big benefits for bendable electronics      (via sciencedaily.com) 

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists open door to manipulating 'quantum light'      (via sciencedaily.com) 

How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Instrument adapted from astronomy observation helps capture singular quantum interference effects      (via sciencedaily.com) 

By adapting technology used for gamma-ray astronomy, researchers has found X-ray transitions previously thought to have been unpolarized according to atomic physics, are in fact highly polarized.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superconducting amplifiers offer high performance with lower power consumption      (via sciencedaily.com) 

Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Sculpting quantum materials for the electronics of the future      (via sciencedaily.com) 

The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.

Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

3D-printed revolving devices can sense how they are moving      (via sciencedaily.com) 

Researchers created a system that enables makers to incorporate sensors directly into rotational mechanisms with only one pass in a 3D printer. This gives rotational mechanisms like gearboxes the ability to sense their angular position, rotation speed, and direction of rotation.

Computer Science: General Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits put new spin on magnetism: Boosting applications of quantum computers      (via sciencedaily.com) 

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough in the understanding of quantum turbulence      (via sciencedaily.com) 

Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Modelling superfast processes in organic solar cell material      (via sciencedaily.com) 

In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Resilient bug-sized robots keep flying even after wing damage      (via sciencedaily.com) 

Researchers have developed resilient artificial muscles that can enable insect-scale aerial robots to effectively recover flight performance after suffering severe damage.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General Offbeat: Space Space: Exploration Space: General
Published

Mix-and-match kit could enable astronauts to build a menagerie of lunar exploration bots      (via sciencedaily.com) 

The Walking Oligomeric Robotic Mobility System, or WORMS, is a reconfigurable, modular, multiagent robotics architecture for extreme lunar terrain mobility. The system could be used to assemble autonomous worm-like parts into larger biomimetic robots that could explore lava tubes, steep slopes, and the moon's permanently shadowed regions.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnetism fosters unusual electronic order in quantum material      (via sciencedaily.com) 

Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.

Chemistry: Inorganic Chemistry Energy: Technology Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Experiment unlocks bizarre properties of strange metals      (via sciencedaily.com) 

Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: Earth and Climate
Published

Researchers unveil smart contact lens, capable of implementing AR-based navigation      (via sciencedaily.com) 

A research team has introduced core technology for smart contact lenses that can implement AR-based navigation through a 3D printing process.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Chemistry: General Chemistry: Inorganic Chemistry Offbeat: Computers and Math Physics: General
Published

Viable superconducting material created, say researchers      (via sciencedaily.com) 

Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.