Computer Science: Quantum Computers Physics: Quantum Computing
Published

Blast chiller for the quantum world      (via sciencedaily.com) 

The quantum nature of objects visible to the naked eye is currently a much-discussed research question. A team has now demonstrated a new method in the laboratory that could make the quantum properties of macroscopic objects more accessible than before. With the method, the researchers were able to increase the efficiency of an established cooling method by an order of a magnitude.

Offbeat: Computers and Math Space: Exploration Space: The Solar System
Published

New small laser device can help detect signs of life on other planets      (via sciencedaily.com) 

As space missions delve deeper into the outer solar system, the need for more compact, resource-conserving and accurate analytical tools has become increasingly critical -- especially as the hunt for extraterrestrial life and habitable planets or moons continues. A University of Maryland-led team developed a new instrument specifically tailored to the needs of NASA space missions. Their mini laser-sourced analyzer is significantly smaller and more resource efficient than its predecessors--all without compromising the quality of its ability to analyze planetary material samples and potential biological activity onsite.

Physics: Quantum Computing
Published

'A perfect little system': Physicists isolate a pair of atoms to observe p-wave interaction strength for the first time      (via sciencedaily.com) 

Physicists have taken a first step in understanding quantum emergence -- the transition from 'one-to-many' particles -- by studying not one, not many, but two isolated, interacting particles. The result is a first, small step toward understanding natural quantum systems, and how they can lead to more powerful and effective quantum simulations. The team has measured the strength of a type of interaction -- known as 'p-wave interactions' -- between two potassium atoms. P-wave interactions are weak in naturally occurring systems, but researchers had long predicted that they have a much higher maximum theoretical limit. The team is the first to confirm that the p-wave force between particles reached this maximum.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

The optical fiber that keeps data safe even after being twisted or bent      (via sciencedaily.com) 

An optical fiber that uses the mathematical concept of topology to remain robust, thereby guaranteeing the high-speed transfer of information, has been created by physicists.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

New quantum computing architecture could be used to connect large-scale devices      (via sciencedaily.com) 

Researchers have demonstrated an architecture that can enable high fidelity and scalable communication between superconducting quantum processors. Their technique can generate and route photons, which carry quantum information, in a user-specified direction. This method could be used to develop a large-scale network of quantum processors that could efficiently communicate with one another.

Offbeat: Computers and Math
Published

A soft, stimulating scaffold supports brain cell development ex vivo      (via sciencedaily.com) 

Brain-computer interface companies like Neuralink are in the news a lot these days for their potential to revolutionize how humans interact with machines, but electrodes are not the most brain-friendly materials -- they're hard and stiff, while brains are soft and squishy, which limits their efficacy and increases the risk of damaging brain tissue.  A new hydrogel-based electrode developed at the Wyss Institute solves that problem by providing a tunable, conductive scaffold that human neurons and other cell types feel right at home in. Not only does the scaffold mimic the soft, porous conditions of brain tissue, it supported the growth and differentiation of human neural progenitor cells (NPCs) into multiple different brain cell types for up to 12 weeks. The achievement is reported in Advanced Healthcare Materials. Not only can the new electrode be used to study the formation of human neural networks in vitro, it could enable the creation of implantable devices that more seamlessly integrate with a patient's brain tissue, improving performance and decreasing risk of injury.

Offbeat: Computers and Math
Published

Next-generation wireless technology may leverage the human body for energy      (via sciencedaily.com) 

While you may be just starting to reap the advantages of 5G wireless technology, researchers throughout the world are already working hard on the future: 6G. One of the most promising breakthroughs in 6G telecommunications is the possibility of Visible Light Communication (VLC), which is like a wireless version of fiberoptics, using flashes of light to transmit information. Now, a team has announced that they have invented a low-cost, innovative way to harvest the waste energy from VLC by using the human body as an antenna. This waste energy can be recycled to power an array of wearable devices, or even, perhaps, larger electronics.

Physics: Quantum Computing
Published

New type of entanglement lets scientists 'see' inside nuclei      (via sciencedaily.com) 

Nuclear physicists have found a new way to use the Relativistic Heavy Ion Collider (RHIC) to see the shape and details inside atomic nuclei. The method relies on particles of light that surround gold ions as they speed around the collider and a new type of quantum entanglement that's never been seen before.

Physics: Quantum Computing
Published

High-performance visible-light lasers that fit on a fingertip      (via sciencedaily.com) 

Researchers have created visible lasers of very pure colors from near-ultraviolet to near-infrared that fit on a fingertip. The colors of the lasers can be precisely tuned and extremely fast -- up to 267 petahertz per second, which is critical for applications such as quantum optics. The team is the first to demonstrate chip-scale narrow-linewidth and tunable lasers for colors of light below red -- green, cyan, blue, and violet.

Offbeat: Computers and Math
Published

Self-powered, printable smart sensors created from emerging semiconductors could mean cheaper, greener Internet of Things      (via sciencedaily.com) 

Creating smart sensors to embed in our everyday objects and environments for the Internet of Things (IoT) would vastly improve daily life -- but requires trillions of such small devices. A professor believes that emerging alternative semiconductors that are printable, low-cost and eco-friendly could lead the way to a cheaper and more sustainable IoT.

Engineering: Graphene Offbeat: Computers and Math
Published

Human brain organoids implanted into mouse cortex respond to visual stimuli for first time      (via sciencedaily.com) 

A team of engineers and neuroscientists has demonstrated for the first time that human brain organoids implanted in mice have established functional connectivity to the animals' cortex and responded to external sensory stimuli. The implanted organoids reacted to visual stimuli in the same way as surrounding tissues, an observation that researchers were able to make in real time over several months thanks to an innovative experimental setup that combines transparent graphene microelectrode arrays and two-photon imaging.

Offbeat: Computers and Math
Published

Designing with DNA      (via sciencedaily.com) 

Marvel at the tiny nanoscale structures emerging from labs, and it's easy to imagine you're browsing a catalog of the world's smallest pottery: itty-bitty vases, bowls, and spheres. But instead of making them from clay, the researchers designed these objects out of threadlike molecules of DNA, bent and folded into complex three-dimensional objects. These creations demonstrate the possibilities of a new open-source software program.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Researchers show a new way to induce useful defects using invisible material properties      (via sciencedaily.com)     Original source 

Much of modern electronic and computing technology is based on one idea: add chemical impurities, or defects, to semiconductors to change their ability to conduct electricity. These altered materials are then combined in different ways to produce the devices that form the basis for digital computing, transistors, and diodes. Indeed, some quantum information technologies are based on a similar principle: adding defects and specific atoms within materials can produce qubits, the fundamental information storage units of quantum computing.

Offbeat: Computers and Math
Published

Shrinking hydrogels enlarge nanofabrication options      (via sciencedaily.com)     Original source 

Researchers have developed a strategy for creating ultrahigh-resolution, complex 3D nanostructures out of various materials.

Offbeat: Computers and Math
Published

New X-ray imaging technique to study the transient phases of quantum materials      (via sciencedaily.com)     Original source 

An international team of researchers has recently demonstrated for the first time the use of a new lensless ultrafast X-Ray method to image phase transitions. This new method enables the direct observation of the dynamics of quantum materials at the nanoscale.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: Quantum Computing
Published

Chaos gives the quantum world a temperature      (via sciencedaily.com) 

Two seemingly different areas of physics are related in subtle ways: Quantum theory and thermodynamics. How can the laws of thermodynamics arise from the laws of quantum physics? This question has now been pursued with computer simulations, which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Quantum dots at room temp, using lab-designed protein      (via sciencedaily.com)     Original source 

Quantum dots are normally made in industrial settings with high temperatures and toxic, expensive solvents -- a process that is neither economical nor environmentally friendly. But researchers have now pulled off the process at the bench using water as a solvent, making a stable end-product at room temperature. Their work opens the door to making nanomaterials in a more sustainable way by demonstrating that protein sequences not derived from nature can be used to synthesize functional materials.