Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Taking photoclick chemistry to the next level      (via sciencedaily.com) 

Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A simpler way to connect quantum computers      (via sciencedaily.com) 

Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Paving the way for advanced quantum sensors      (via sciencedaily.com) 

Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.

Offbeat: Earth and Climate
Published

A lightweight wearable device helps users navigate with a tap on the wrist      (via sciencedaily.com)     Original source 

Scientists have developed a fabric-based wearable device that 'taps' a user's wrist with pressurized air, silently helping them navigate to their destination. The study demonstrated that users correctly interpreted which direction the device was telling them to go an average of 87% of the time. Since the wearable embeds most of its control system within the fabric itself, using air instead of electronics, it can be built lighter and more compact than existing designs.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hotter quantum systems can cool faster than initially colder equivalents      (via sciencedaily.com) 

The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene: Perfection is futile      (via sciencedaily.com) 

It has long been known that graphene has excellent electronic properties. However, it was unclear until now how stable these properties are. Are they destroyed by disturbances and additional effects, which are unavoidable in practice, or do they remain intact? Scientists have now succeeded in developing a comprehensive computer model of realistic graphene structures. It turned out that the desired effects are very stable. Even graphene pieces that are not quite perfect can be used well for technological applications.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Golden rules for building atomic blocks      (via sciencedaily.com) 

Physicists have developed a technique to precisely control the alignment of supermoiré lattices by using a set of golden rules, paving the way for the advancement of next generation moiré quantum matter.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum computer unveils atomic dynamics of light-sensitive molecules      (via sciencedaily.com) 

Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.

Biology: Zoology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Which radio waves disrupt the magnetic sense in migratory birds?      (via sciencedaily.com) 

Many songbirds use the earth's magnetic field as a guide during their migrations, but radiowaves interfere with this ability. A new study has found an upper bound for the frequency that disrupts the magnetic compass.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists use quantum device to slow down simulated chemical reaction 100 billion times      (via sciencedaily.com) 

Using a trapped-ion quantum computer, the research team witnessed the interference pattern of a single atom caused by a 'conical intersection'. Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum device generates single photons and encodes information      (via sciencedaily.com) 

A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Do measurements produce the reality they show us?      (via sciencedaily.com) 

The measurement values determined in sufficiently precise measurements of physical systems will vary based on the relation between the past and the future of a system determined by its interactions with the meter. This finding may explain why quantum experiments often produce paradoxical results that can contradict our common-sense idea of physical reality.

Biology: Marine Ecology: Sea Life Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Scientists solve mystery of why thousands of octopus migrate to deep-sea thermal springs      (via sciencedaily.com)     Original source 

Researchers used advanced technology to study a massive aggregation of deep-sea octopus gathered at thermal springs near an extinct underwater volcano off the coast of Central California. Warm water from hydrothermal springs accelerates development of octopus embryos, giving young octopus a better chance of survival. The Octopus Garden is the largest known aggregation of octopus on the planet -- the size of this nursery, and the abundance of other marine life that thrives in this rich community, highlight the need to understand and protect the hotspots of life on the deep seafloor from threats like climate change and seabed mining.

Biology: Marine Biology: Zoology Ecology: Sea Life Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Barnacles may help reveal location of lost Malaysia Airlines flight MH370      (via sciencedaily.com)     Original source 

Geoscientists have created a new method that can reconstruct the drift path and origin of debris from flight MH370, an aircraft that went missing over the Indian Ocean in 2014 with 239 passengers and crew. 

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Sci­en­tists develop fermionic quan­tum pro­ces­sor      (via sciencedaily.com) 

Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.

Biology: Botany Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Heat sensor protects the Venus flytrap from fire      (via sciencedaily.com)     Original source 

The sensory hairs of the Venus flytrap contain a heat sensor that warns the plant of bush fires. It reacts to rapid temperature jumps, as researchers have discovered.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: General
Published

Want to know how light works? Try asking a mechanic      (via sciencedaily.com) 

Physicists use a 350-year-old theorem that explains the workings of pendulums and planets to reveal new properties of light waves.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists simulate super diffusion on a quantum computer      (via sciencedaily.com) 

Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.