Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Computing
Published Revolutionary breakthrough in solar energy: Most efficient QD solar cells (via sciencedaily.com) Original source
A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
Published Electrons become fractions of themselves in graphene (via sciencedaily.com) Original source
Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.
Published Engineers achieve breakthrough in quantum sensing (via sciencedaily.com) Original source
A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.
Published Accelerating the discovery of single-molecule magnets with deep learning (via sciencedaily.com) Original source
Single-molecule magnets (SMMs) are exciting materials. In a recent breakthrough, researchers have used deep learning to predict SMMs from 20,000 metal complexes. The predictions were made solely based on the crystal structures of these metal complexes, thus eliminating the need for time-consuming experiments and complex simulations. As a result, this method is expected to accelerate the development of functional materials, especially for high-density memory and quantum computing devices.
Published Fundamental equation for superconducting quantum bits revised (via sciencedaily.com) Original source
Physicists have uncovered that Josephson tunnel junctions -- the fundamental building blocks of superconducting quantum computers -- are more complex than previously thought. Just like overtones in a musical instrument, harmonics are superimposed on the fundamental mode. As a consequence, corrections may lead to quantum bits that are 2 to 7 times more stable. The researchers support their findings with experimental evidence from multiple laboratories across the globe.
Published A 'quantum leap' at room temperature (via sciencedaily.com) Original source
Scientists have achieved a milestone by controlling quantum phenomena at room temperature.
Published How electron spectroscopy measures exciton 'holes' (via sciencedaily.com) Original source
Semiconductors are ubiquitous in modern technology, working to either enable or prevent the flow of electricity. In order to understand the potential of two-dimensional semiconductors for future computer and photovoltaic technologies, researchers investigated the bond that builds between the electrons and holes contained in these materials. By using a special method to break up the bond between electrons and holes, they were able to gain a microscopic insight into charge transfer processes across a semiconductor interface.
Published Technique could improve the sensitivity of quantum sensing devices (via sciencedaily.com) Original source
A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.
Published Combining materials may support unique superconductivity for quantum computing (via sciencedaily.com) Original source
A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.
Published Structural isomerization of individual molecules using a scanning tunneling microscope probe (via sciencedaily.com) Original source
An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.
Published Direct view of tantalum oxidation that impedes qubit coherence (via sciencedaily.com) Original source
Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.
Published Magnesium protects tantalum, a promising material for making qubits (via sciencedaily.com) Original source
Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.
Published A physical qubit with built-in error correction (via sciencedaily.com) Original source
Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.
Published Short X-ray pulses reveal the source of light-induced ferroelectricity in SrTiO3 (via sciencedaily.com) Original source
Researchers have gained new insights into the development of the light-induced ferroelectric state in SrTiO3. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain why the dipolar structure is more ordered than in equilibrium and why the laser pulses induce a ferroelectric state in the material.
Published Scientists make breakthrough in quantum materials research (via sciencedaily.com) Original source
Researchers describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.
Published Researchers craft new way to make high-temperature superconductors -- with a twist (via sciencedaily.com) Original source
An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.
Published Superfluids could share characteristic with common fluids (via sciencedaily.com) Original source
Every fluid -- from Earth's atmosphere to blood pumping through the human body -- has viscosity, a quantifiable characteristic describing how the fluid will deform when it encounters some other matter. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow. The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. However, this Reynolds similitude does not apply to quantum superfluids. A researcher has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.
Published Small yet mighty: Showcasing precision nanocluster formation with molecular traps (via sciencedaily.com) Original source
Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.
Published Scientists pull off quantum coup (via sciencedaily.com) Original source
Scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.
Published Shining a light on the hidden properties of quantum materials (via sciencedaily.com) Original source
Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).