Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Computing
Published Quantum sensor for the atomic world (via sciencedaily.com) Original source
In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
Published Nonreciprocal interactions go nonlinear (via sciencedaily.com) Original source
Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.
Published Spin qubits go trampolining (via sciencedaily.com) Original source
Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published Physicists develop new theory describing the energy landscape formed when quantum particles gather together (via sciencedaily.com) Original source
An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.
Published Paving the way to extremely fast, compact computer memory (via sciencedaily.com) Original source
Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.
Published A breakthrough on the edge: One step closer to topological quantum computing (via sciencedaily.com) Original source
Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.
Published Moving from the visible to the infrared: Developing high quality nanocrystals (via sciencedaily.com) Original source
Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published A 2D device for quantum cooling (via sciencedaily.com) Original source
Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published A genetic algorithm for phononic crystals (via sciencedaily.com) Original source
Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published Giant clams may hold the answers to making solar energy more efficient (via sciencedaily.com) Original source
Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.
Published Neutrons on classically inexplicable paths (via sciencedaily.com) Original source
Is nature really as strange as quantum theory says -- or are there simpler explanations? New neutron measurements prove: It doesn't work without the strange properties of quantum theory.
Published Visual explanations of machine learning models to estimate charge states in quantum dots (via sciencedaily.com) Original source
To form qubit states in semiconductor materials, it requires tuning for numerous parameters. But as the number of qubits increases, the amount of parameters also increases, thereby complicating this process. Now, researchers have automated this process, overcoming a significant barrier to realizing quantum computers.
Published Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films (via sciencedaily.com) Original source
If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.
Published Understanding quantum states: New research shows importance of precise topography in solid neon qubits (via sciencedaily.com) Original source
A new study shows new insight into the quantum state that describes the condition of electrons on an electron-on-solid-neon quantum bit, information that can help engineers build this innovative technology.
Published A chip-scale Titanium-sapphire laser (via sciencedaily.com) Original source
With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.
Published Precision instrument bolsters efforts to find elusive dark energy (via sciencedaily.com) Original source
Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.
Published Researchers discover new flat electronic bands, paving way for advanced quantum materials (via sciencedaily.com) Original source
Scientists predict the existence of flat electronic bands at the Fermi level, a finding that could enable new forms of quantum computing and electronic devices.
Published Breakthrough may clear major hurdle for quantum computers (via sciencedaily.com) Original source
The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.
Published New material puts eco-friendly methanol conversion within reach (via sciencedaily.com) Original source
Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.
Published Quantum entanglement measures Earth rotation (via sciencedaily.com) Original source
Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.