Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Physics: Optics
Published Promising new development in solar cell technology



Researchers who contributed to the development of record-breaking solar cells a few years ago, expanded their invention. The self-assembled monolayers can now be applied not only in inverted but also in regular structure perovskite solar cells.
Published Scientists generate heat over 1,000 degrees Celsius with solar power instead of fossil fuel



Instead of burning fossil fuels to smelt steel and cook cement, researchers in Switzerland want to use heat from the sun. The proof-of-concept study uses synthetic quartz to trap solar energy at temperatures over 1,000 C (1,832 F), demonstrating the method's potential role in providing clean energy for carbon-intensive industries.
Published Metalens expands Its reach from light to sound



Engineers achieve a wide field-of-hearing acoustic metalens free from aberrations.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published Transforming waste carbon dioxide into high-value chemicals with a cost reduction of about 30%



A team of scientists has developed a novel technique to convert carbon dioxide (CO2) from treated flue gas directly into high-value chemicals and fuels. This innovation sidesteps the conventional approach of using high-purity CO2 for electrochemical reduction processes, achieving significant cost savings of about 30%.
Published Exploring interface phenomena for more durable and effective nickel--tungsten alloys



The insights into the formation of various phases, including intermetallic compounds, at the interface between nickel (Ni) and tungsten (W) can lead to the development of advanced high-temperature Ni--W coatings. Their study sheds light on the formation of intercrystallite regions and Kirkendall voids, which can be leveraged to improve the durability and effectiveness of the alloys.
Published Speedy, secure, sustainable -- that's the future of telecom



A new device that can process information using a small amount of light could enable energy-efficient and secure communications.
Published Milestone in plasma acceleration



Scientists have made a significant advance in laser plasma acceleration. By employing an innovative method, a research team managed to substantially exceed the previous record for proton acceleration. For the first time, they achieved energies that so far have only seemed possible at much larger facilities. As the research group reported, promising applications in medicine and materials science have now become much likelier.
Published Good vibrations: New tech may lead to smaller, more powerful wireless devices



What if your earbuds could do everything your smartphone can, but better? A new class of synthetic materials could allow for smaller devices that use less power.
Published Manganese sprinkled with iridium: a quantum leap in green hydrogen production



Researchers report a new method that reduces the amount of iridium needed to produce hydrogen from water by 95%, without altering the rate of hydrogen production. This breakthrough could revolutionize our ability to produce ecologically friendly hydrogen and help usher in a carbon-neutral hydrogen economy.
Published 2D all-organic perovskites: potential use in 2D electronics



Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.
Published Researchers harness blurred light to 3D print high quality optical components



Researchers have developed a new 3D printing method called blurred tomography that can rapidly produce microlenses with commercial-level optical quality. The new method may make it easier and faster to design and fabricate a variety of optical devices.
Published Getting dirty to clean up the chemical industry's environmental impact



The global chemical industry is a major fossil fuel consumer and climate change contributor; however, new research has identified how the sector could clean up its green credentials by getting dirty.
Published Discover optimal conditions for mass production of ultraviolet holograms



Scientists delve into the composition of nanocomposites for ultraviolet metasurface fabrication.
Published Chemists produce new-to-nature enzyme containing boron



Chemists created an enzyme with boronic acid at its reactive center. This approach can produce more selective reactions with boron, and allows the use of directed evolution to improve its catalytic power.
Published A new, low-cost, high-efficiency photonic integrated circuit



Researchers have developed scalable photonic integrated circuits, based on lithium tantalate, marking a significant advancement in optical technologies with potential to widespread commercial applications.
Published An AI leap into chemical synthesis



Scientists introduce a large language model-based AI system that revolutionizes chemistry by integrating 18 advanced tools for tasks like organic synthesis and drug discovery.
Published Tiny displacements, giant changes in optical properties



Researchers reveal a new pathway for designing optical materials using the degree of atomic disorder. The researchers anticipate developing crystals that enable advanced infrared imaging in low light conditions, or to enhance medical imaging devices.
Published Bio-inspired materials' potential for efficient mass transfer boosted by a new twist on a century-old theory



The natural vein structure found within leaves -- which has inspired the structural design of porous materials that can maximize mass transfer -- could unlock improvements in energy storage, catalysis, and sensing thanks to a new twist on a century-old biophysical law.
Published Researchers 'unzip' 2D materials with lasers



Researchers used commercially available tabletop lasers to create tiny, atomically sharp nanostructures in samples of a layered 2D material called hexagonal Boron Nitride (hBN). The new nanopatterning technique is a simple way to modify materials with light--and it doesn't involve an expensive and resource-intensive clean room.