Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Physics: Optics
Published Kerr-enhanced optical spring for next-generation gravitational wave detectors



A novel technique for enhancing optical spring that utilizes the Kerr effect to improve the sensitivity of gravitational wave detectors (GWDs) has recently been developed. This innovative design uses optical non-linear effects from the Kerr effect in the Fabry-Perot cavity to achieve high signal amplification ratios and optical spring constant, with potential applications in not only GWDs but also in a range of optomechanical systems.
Published Physics of complex fluids: Ring polymers show unexpected motion patterns under shear



An international research team is attracting the attention of experts in the field with computational results on the behavior of ring polymers under shear forces: They showed that for the simplest case of connected ring pairs, the type of linkage -- chemically bonded vs. mechanically linked -- has profound effects on the dynamic properties under continuous shear. In these cases novel rheological patterns emerge.
Published 'Tug of war' tactic enhances chemical separations for critical materials



Lanthanide elements are important for clean energy and other applications. To use them, industry must separate mixed lanthanide sources into individual elements using costly, time-consuming, and waste-generating procedures. An efficient new method can be tailored to select specific lanthanides. The technique combines two substances that do not mix and that prefer different types of lanthanides. The process would allow for smaller equipment, less use of chemicals, and less waste production.
Published Plant-based plastic releases nine times less microplastics than conventional plastic



A newly developed plant-based plastic material releases nine times less microplastics than conventional plastic when exposed to sunlight and seawater, a new study has found.
Published Researchers visualize quantum effects in electron waves



One of the most fundamental interactions in physics is that of electrons and light. In an experiment, scientists have now managed to observe what is known as the Kapitza-Dirac effect for the first time in full temporal resolution. This effect was first postulated over 90 years ago, but only now are its finest details coming to light.
Published Water-based paints: Less stinky, but some still contain potentially hazardous chemicals



Choosing paint for your home brings a lot of options: What kind of paint, what type of finish and what color? Water-based paints have emerged as 'greener' and less smelly than solvent-based options. And they are often advertised as containing little-to-no volatile organic compounds (VOCs). But, according to new research, some of these paints do contain compounds that are considered VOCs, along with other chemicals of emerging concern.
Published Intelligent liquid



Researchers have developed a programmable meta-fluid with tunable springiness, optical properties, viscosity and even the ability to transition between a Newtonian and non-Newtonian fluid. The first-of-its-kind meta-fluid uses a suspension of small, elastomer spheres -- between 50 to 500 microns -- that buckle under pressure, radically changing the characteristics of the fluid. The meta-fluid could be used in everything from hydraulic actuators to program robots, to intelligent shock absorbers that can dissipate energy depending on the intensity of the impact, to optical devices that can transition from clear to opaque.
Published Sunrise to sunset, new window coating blocks heat -- not view



Windows welcome light into interior spaces, but they also bring in unwanted heat. A new window coating blocks heat-generating ultraviolet and infrared light and lets through visible light, regardless of the sun's angle. The coating can be incorporated onto existing windows or automobiles and can reduce air-conditioning cooling costs by more than one-third in hot climates.
Published Biofilm-resistant glass for marine environments



Engineers have created ultraviolet (UV) rays-emitting glass that can reduce 98% of biofilm from growing on surfaces in underwater environments.
Published Chemistry researchers modify solar technology to produce a less harmful greenhouse gas



Researchers are using semiconductors to harvest and convert the sun's energy into high-energy compounds that have the potential to produce environmentally-friendly fuels.
Published 100 kilometers of quantum-encrypted transfer



Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.
Published Engineers 'symphonize' cleaner ammonia production



Among the many chemicals we use every day, ammonia is one of the worst for the atmosphere. The nitrogen-based chemical used in fertilizer, dyes, explosives and many other products ranks second only to cement in terms of carbon emissions, due to the high temperatures and energy needed to manufacture it. But by improving on a well-known electrochemical reaction and orchestrating a 'symphony' of lithium, nitrogen and hydrogen atoms, engineers have developed a new ammonia production process that meets several green targets.
Published Artificial intelligence boosts super-resolution microscopy



Generative artificial intelligence (AI) might be best known from text or image-creating applications like ChatGPT or Stable Diffusion. But its usefulness beyond that is being shown in more and more different scientific fields.
Published Can metalens be commercialized at a fraction of the cost?



Researchers suggests a groundbreaking strategy to expedite the commercialization of metalens technology.
Published Study unlocks the power of visible light for sustainable chemistry



A breakthrough in sustainable molecular transformations has been announced. Chemists have developed an important way to harness the power of visible light to drive chemical processes with greater efficiencies, offering a greener alternative to traditional methods.
Published More efficient TVs, screens and lighting



New multidisciplinary research could lead to more efficient televisions, computer screens and lighting.
Published A tiny spot leads to a large advancement in nano-processing, researchers reveal



Focusing a tailored laser beam through transparent glass can create a tiny spot inside the material. Researchers have reported on a way to use this small spot to improve laser material processing, boosting processing resolution.
Published Bullseye! Accurately centering quantum dots within photonic chips



Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.
Published New method to measure entropy production on the nanoscale



Entropy, the amount of molecular disorder, is produced in several systems but cannot be measured directly. A new equation sheds new light on how entropy is produced on a very short time scale in laser excited materials.
Published Micro-Lisa! Making a mark with novel nano-scale laser writing



High-power lasers are often used to modify polymer surfaces to make high-tech biomedical products, electronics and data storage components. Now researchers have discovered a light-responsive, inexpensive sulfur-derived polymer is receptive to low power, visible light lasers -- promising a more affordable and safer production method in nanotech, chemical science and patterning surfaces in biological applications.