Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Physics: Optics
Published Research lights up process for turning CO2 into sustainable fuel



Researchers have successfully transformed CO2 into methanol by shining sunlight on single atoms of copper deposited on a light-activated material, a discovery that paves the way for creating new green fuels.
Published Pushing back the limits of optical imaging by processing trillions of frames per second



Pushing for a higher speed isn't just for athletes. Researchers, too, can achieve such feats with their discoveries. A new device called SCARF (for swept-coded aperture real-time femtophotography) can capture transient absorption in a semiconductor and ultrafast demagnetization of a metal alloy. This new method will help push forward the frontiers of knowledge in a wide range of fields, including modern physics, biology, chemistry, materials science, and engineering.
Published A self-cleaning wall paint



Beautiful white wall paint does not stay beautiful and white forever. Often, various substances from the air accumulate on its surface. This can be a desired effect because it makes the air cleaner for a while -- but over time, the color changes and needs to be renewed. Now, special titanium oxide nanoparticles have been developed that can be added to ordinary, commercially available wall paint to establish self-cleaning power: The nanoparticles are photocatalytically active, they can use sunlight not only to bind substances from the air, but also to decompose them afterwards.
Published Major environmental benefits recycling gold with biodiesel



Researchers have developed an environmentally friendly method for recycling and purifying metals. Using gold earrings from a pawnshop in Gothenburg and biodiesel from the nearest filling station, the discovery could change an industry that is currently dependent on large amounts of fossil oil.
Published Say hello to biodegradable microplastics



Finding viable alternatives to traditional petroleum-based plastics and microplastics has never been more important. New research shows that their plant-based polymers biodegrade -- even at the microplastic level -- in under seven months.
Published N-channel diamond field-effect transistor



A research team has developed an n-channel diamond MOSFET (metal-oxide-semiconductor field-effect transistor). The developed n-channel diamond MOSFET provides a key step toward CMOS (complementary metal-oxide-semiconductor: one of the most popular technologies in the computer chip) integrated circuits for harsh-environment- applications as well as the development of diamond power electronics.
Published New reactor could save millions when making ingredients for plastics and rubber from natural gas



A new way to make an important ingredient for plastics, adhesives, carpet fibers, household cleaners and more from natural gas could reduce manufacturing costs in a post-petroleum economy by millions of dollars, thanks to a new chemical reactor.
Published New route to recyclable polymers from plants



Cellulose, abundantly available from plant biomass, can be converted into molecules used to make a new class of recyclable polymers, to sustainably replace some plastics.
Published Cleaning up environmental contaminants with quantum dot technology



The 2023 Nobel Prize in Chemistry was focused on quantum dots -- objects so tiny, they're controlled by the strange rules of quantum physics. Quantum dots used in electronics are often toxic, but their nontoxic counterparts are being explored for uses in medicine and in the environment, including water decontamination. One team of researchers has specially designed carbon- and sulfur-based dots for these environmental applications.
Published Researchers add swept illumination to open-top light-sheet microscope



Researchers have incorporated a swept illumination source into an open-top light-sheet microscope to enable improved optical sectioning over a larger area of view. The advance makes the technique more practical for nondestructive 3D pathology.
Published Recyclable reagent and sunlight convert carbon monoxide into methanol



Scientists have demonstrated the selective conversion of carbon dioxide (CO2) into methanol using a cascade reaction strategy. The two-part process is powered by sunlight, occurs at room temperature and at ambient pressure, and employs a recyclable organic reagent that's similar to a catalyst found in natural photosynthesis.
Published Metamaterials and AI converge, igniting innovative breakthroughs



Scientists unveil next-generation research trends in metaphotonics platforms with AI.
Published Toxic metal particles can be present in cannabis vapes even before the first use, study finds



Though vapes have been heralded as a 'safer' way to consume either nicotine or cannabis, they present their own suite of risks that are being revealed through increasing regulation. Now, scientists have discovered that nano-sized toxic metal particles can be present in cannabis vaping liquids even before any heating occurs, and the effect is worse in illicit products.
Published Molecular crystal motors move like microbes when exposed to light



At first glance, Rabih Al-Kaysi's molecular motors look like the microscopic worms you'd see in a drop of pond water. But these wriggling ribbons are not alive; they're made from crystallized molecules that perform coordinated movements when exposed to light. With continued development, these tiny machines could be used as drug-delivery robots or engineered into arrays that direct the flow of water around submarines.
Published Sustainable solution for wastewater polluted by dyes used in many industries



Water pollution from dyes used in textile, food, cosmetic and other manufacturing is a major ecological concern with industry and scientists seeking biocompatible and more sustainable alternatives to protect the environment. A new study has discovered a novel way to degrade and potentially remove toxic organic chemicals including azo dyes from wastewater, using a chemical photocatalysis process powered by ultraviolet light.
Published Spectroscopy and theory shed light on excitons in semiconductors



Researchers have made very fast and very precise images of excitons -- in fact, accurate to one quadrillionth of a second and one billionth of a meter. This understanding is essential for developing more efficient materials with organic semiconductors.
Published Backyard insect inspires invisibility devices, next gen tech



Leafhoppers, a common backyard insect, secrete and coat themselves in tiny mysterious particles that could provide both the inspiration and the instructions for next-generation technology, according to a new study. In a first, the team precisely replicated the complex geometry of these particles, called brochosomes, and elucidated a better understanding of how they absorb both visible and ultraviolet light.
Published Harnessing hydrogen at life's origin



A new report uncovers how hydrogen gas, the energy of the future, provided energy in the past, at the origin of life 4 billion years ago. Hydrogen gas is clean fuel. It burns with oxygen in the air to provide energy with no CO2. Hydrogen is a key to sustainable energy for the future. Though humans are just now coming to realize the benefits of hydrogen gas (H2 in chemical shorthand), microbes have known that H2 is good fuel for as long as there has been life on Earth. Hydrogen is ancient energy.
Published Using light to produce medication and plastics more efficiently



Anyone who wants to produce medication, plastics or fertilizer using conventional methods needs heat for chemical reactions -- but not so with photochemistry, where light provides the energy. The process to achieve the desired product also often takes fewer intermediate steps. Researchers are now going one step further and are demonstrating how the energy efficiency of photochemical reactions can be increased tenfold. More sustainable and cost-effective applications are now tantalizingly close.
Published Projection mapping leaves the darkness behind



Researchers developed a system that enables projection mapping within an illuminated environment. Several standard projectors and one large-aperture projector reproduce the environmental illumination in all areas except for the target object, whereas texture projectors display the texture on the unilluminated object's surface. Experiments show that participants perceived the objects using surface-color mode instead of aperture-color mode, verifying that the proposed system has the potential to produce highly realistic interactive environments.