Showing 20 articles starting at article 441

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Physics: Optics

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

AI-driven lab speeds catalysis research      (via sciencedaily.com)     Original source 

Researchers have developed a 'self-driving' lab that uses artificial intelligence (AI) and automated systems to provide in-depth analyses of catalytic reactions used in chemical research and manufacturing. The new tool, called Fast-Cat, can provide more information in five days than is possible in six months of conventional testing.

Physics: General Physics: Optics
Published

Movies of ultrafast electronic circuitry in space and time      (via sciencedaily.com)     Original source 

Researchers have successfully filmed the operations of extremely fast electronic circuitry in an electron microscope at a bandwidth of tens of terahertz.

Energy: Nuclear Physics: General Physics: Optics Physics: Quantum Physics
Published

Laser-focused look at spinning electrons shatters world record for precision      (via sciencedaily.com)     Original source 

Nuclear physicists have shattered a nearly 30-year-old record for precision in electron beam polarimetry. The groundbreaking result sets the stage for high-profile experiments that could open the door to new physics discoveries.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

A new theoretical development clarifies water's electronic structure      (via sciencedaily.com)     Original source 

Scientists have decoded the electronic structure of water, opening up new perspectives for technological and environmental applications.

Physics: General Physics: Optics
Published

Reimagining electron microscopy: Bringing high-end resolution to lower-cost microscopes      (via sciencedaily.com)     Original source 

Researchers have shown that expensive aberration-corrected microscopes are no longer required to achieve record-breaking microscopic resolution.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

The mutual neutralization of hydronium and hydroxide      (via sciencedaily.com)     Original source 

Researchers have been able to directly visualize the neutral products of the mutual neutralization of hydronium and hydroxide, and report three different product channels: two channels were attributed to a predominant electron-transfer mechanism, and a smaller channel was associated with proton transfer. The two-beam collision experiment is an important step toward understanding the quantum dynamics of this fundamental reaction.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Technology Environmental: General Physics: Optics
Published

New world record for CIGS solar cells      (via sciencedaily.com)     Original source 

A new record for electrical energy generation from CIGS solar cells has been reached. Scientists have achieved a 23.64 percent efficiency.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Measuring the properties of light: Scientists realize new method for determining quantum states      (via sciencedaily.com)     Original source 

Scientists have used a new method to determine the characteristics of optical, i.e. light-based, quantum states. For the first time, they are using certain photon detectors -- devices that can detect individual light particles -- for so-called homodyne detection. The ability to characterize optical quantum states makes the method an essential tool for quantum information processing.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize unique anticancer molecules using novel approach      (via sciencedaily.com)     Original source 

Nearly 30 years ago, scientists discovered a unique class of anticancer molecules in a family of bryozoans, a phylum of marine invertebrates found in tropical waters. The chemical structures of these molecules, which consist of a dense, highly complex knot of oxidized rings and nitrogen atoms, has attracted the interest of organic chemists worldwide, who aimed to recreate these structures from scratch in the laboratory. However, despite considerable effort, it has remained an elusive task. Until now, that is. A team of chemists has succeeded in synthesizing eight of the compounds for the first time using an approach that combines inventive chemical strategy with the latest technology in small molecule structure determination.

Physics: General Physics: Optics
Published

Photon upconversion: Steering light with supercritical coupling      (via sciencedaily.com)     Original source 

Researchers have unveiled a novel concept termed 'supercritical coupling' that enables several folds increase in photon upconversion efficiency. This discovery not only challenges existing paradigms, but also opens a new direction in the control of light emission.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Geoscience: Geochemistry
Published

A new vibrant blue pottery pigment with less cobalt      (via sciencedaily.com)     Original source 

Whether ultramarine, cerulean, Egyptian or cobalt, blue pigments have colored artworks for centuries. Now, seemingly out of the blue, scientists have discovered a new blue pigment that uses less cobalt but still maintains a brilliant shine. Though something like this might only happen once in a blue moon, the cobalt-doped barium aluminosilicate colorant withstands the high temperatures found in a kiln and provides a bright color to glazed tiles.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Graphene research: Numerous products, no acute dangers found by study      (via sciencedaily.com)     Original source 

Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.

Physics: Optics
Published

Charting new paths in AI learning      (via sciencedaily.com)     Original source 

Physicists explore different AI learning methods, which can lead to smarter and more efficient models.

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

An environmentally friendly way to turn seafood waste into value-added products      (via sciencedaily.com)     Original source 

Reduce, reuse, recycle, and repurpose: These are all ways we can live more sustainably. One tricky aspect of recycling, though, is that sometimes the recycling process is chemically intensive, and this is the case for recycling one of the world's most abundant materials -- chitin. Researchers have tackled this problem and found a way to sustainably recover chitin from seafood waste.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Revolutionary breakthrough in solar energy: Most efficient QD solar cells      (via sciencedaily.com)     Original source 

A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.

Chemistry: Biochemistry Energy: Alternative Fuels Physics: Optics
Published

Scientists invent ultra-thin, minimally-invasive pacemaker controlled by light      (via sciencedaily.com)     Original source 

A team of researchers has developed a wireless device, powered by light, that can be implanted to regulate cardiovascular or neural activity in the body. The feather-light membranes, thinner than a human hair, can be inserted with minimally invasive surgery and contain no moving parts.

Biology: Biochemistry Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers achieve breakthrough in quantum sensing      (via sciencedaily.com)     Original source 

A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

It's the spin that makes the difference      (via sciencedaily.com)     Original source 

Biomolecules such as amino acids and sugars occur in two mirror-image forms -- in all living organisms, however, only one is ever found. Why this is the case is still unclear. Researchers have now found evidence that the interplay between electric and magnetic fields could be at the origin of this phenomenon.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Geochemistry
Published

Physicists develop more efficient solar cell      (via sciencedaily.com)     Original source 

Physicists have used complex computer simulations to develop a new design for significantly more efficient solar cells than previously available. A thin layer of organic material, known as tetracene, is responsible for the increase in efficiency.