Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Physics: Optics
Published The mother of all motion sensors



Researchers have used silicon photonic microchip components to perform a quantum sensing technique called atom interferometry, an ultra-precise way of measuring acceleration. It is the latest milestone toward developing a kind of quantum compass for navigation when GPS signals are unavailable.
Published Wearable display tech: Full-color fiber LEDs based on perovskite quantum wires



A research team has developed full-color fiber light-emitting diodes utilizing perovskite quantum wires (PeQWs), paving the way for innovative wearable lighting and display devices.
Published Engineers bring efficient optical neural networks into focus



Researchers have published a programmable framework that overcomes a key computational bottleneck of optics-based artificial intelligence systems. In a series of image classification experiments, they used scattered light from a low-power laser to perform accurate, scalable computations using a fraction of the energy of electronics.
Published New mechanism to cool buildings while saving energy



The movement of radiant heat -- felt when a hot surface warms our bodies and homes -- between buildings and their surroundings at ground level makes buildings with less skyward-facing surfaces harder to cool. A research team has demonstrated a new passive cooling technology that coats walls and windows with materials that can better manage heat movement between buildings and their surroundings at ground level. Findings could reduce the reliance on air conditioning and provide a more environmentally friendly, low-cost and scalable option for low-income communities with limited or no access to cooling and heating systems.
Published 3D laser printing with bioinks from microalgae



Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as 'biofactories' for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae.
Published New technology uses light to engrave erasable 3D images



Researchers invented a technique that uses a specialized light projector and a photosensitive chemical additive to imprint two- and three-dimensional images inside any polymer. The light-based engraving remains in the polymer until heat or light are applied, which erases the image and makes it ready to use again. The technology is intended for any situation where having detailed, precise visual data in a compact and easily customizable format could be critical, such as planning surgeries and developing architectural designs.
Published Artificial compound eye to revolutionize robotic vision at lower cost but higher sensitivity



A research team has recently developed a novel artificial compound eye system that is not only more cost-effective, but demonstrates a sensitivity at least twice that of existing market products in small areas. The system promises to revolutionize robotic vision, enhance robots' abilities in navigation, perception and decision-making, while promoting commercial application and further development in human-robot collaboration.
Published Stacking molecules like plates improves organic solar device performance



Researchers found that how well light-converting molecules stack together in a solid is important for how well they convert light into electric current. A rigid molecule that stacked well showed excellent electricity generation in an organic solar cell and photocatalyst, easily outperforming a similar flexible molecule that did not stack well. This new way of improving the design of molecules could be used to pioneer the next generation of light-converting devices.
Published Researchers solve long-standing challenge for piezoelectric materials



Heat and pressure can deteriorate the properties of piezoelectric materials that make state-of-the-art ultrasound and sonar technologies possible -- and fixing that damage has historically required disassembling devices and exposing the materials to even higher temperatures. Now researchers have developed a technique to restore those properties at room temperature, making it easier to repair these devices -- and paving the way for new ultrasound technologies.
Published Heating for fusion: Why toast plasma when you can microwave it!



Can plasma be sufficiently heated inside a tokamak using only microwaves? New research suggests it can! Eliminating the central ohmic heating coil normally used in tokamaks will free up much-needed space for a more compact, efficient spherical tokamak.
Published Seismic detectors measure soil moisture using traffic noise



Using state of the art techniques, researchers use vibrations from traffic to measure underground soil moisture.
Published Revolutionary loop heat pipe transports 10 kW of waste heat -- No electricity required



Researchers have unveiled a new loop heat pipe capable of transporting up to 10 kW of heat without using electric power. The loop heat pipe's design aims to contribute to energy savings and carbon neutrality in various fields, including waste heat recovery, solar heat utilization, electric vehicle thermal management, and data center cooling.
Published Precise package delivery in cells?



Researchers have developed new real-time microscopy technology and successfully observed the behavior of 'motor proteins', which may hold the key to unraveling the efficient material transport strategy of cells.
Published Stacked up against the rest



Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.
Published More electricity from the sun



A coating of solar cells with special organic molecules could pave the way for a new generation of solar panels. This coating can increase the efficiency of monolithic tandem cells made of silicon and perovskite while lowering their cost -- because they are produced from industrial, microstructured, standard silicon wafers.
Published Physicists use light to probe deeper into the 'invisible' energy states of molecules



Physicists have experimentally demonstrates a novel physical effect that was predicted 45 years ago. The effect will result in a new chemical analysis technique, to simultaneously identify molecular bonds and their 3D arrangement in space. This new technique will find applications in pharmaceutical science, security, forensics, environmental science, art conservation, and medicine.
Published Green hydrogen: 'Artificial leaf' becomes better under pressure



Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team has now shown that the efficiency of PEC cells can be significantly increased under pressure.
Published Super-black wood can improve telescopes, optical devices and consumer goods



Thanks to an accidental discovery, researchers have created a new super-black material that absorbs almost all light, opening potential applications in fine jewelry, solar cells and precision optical devices.
Published Researchers identify unique phenomenon in Kagome metal



A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.
Published What no one has seen before -- simulation of gravitational waves from failing warp drive



Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.