Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Physics: Optics
Published A solar hydrogen system that co-generates heat and oxygen



Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.
Published Microwaves advance solar-cell production and recycling



New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.
Published Processing data at the speed of light



Scientists have developed an extremely small and fast nano-excitonic transistor.
Published Laser light hybrids control giant currents at ultrafast times



The flow of matter, from macroscopic water currents to the microscopic flow of electric charge, underpins much of the infrastructure of modern times. In the search for breakthroughs in energy efficiency, data storage capacity, and processing speed, scientists search for ways in which to control the flow of quantum aspects of matter such as the 'spin' of an electron -- its magnetic moment -- or its 'valley state', a novel quantum aspect of matter found in many two dimensional materials. A team of researchers has recently discovered a route to induce and control the flow of spin and valley currents at ultrafast times with specially designed laser pulses, offering a new perspective on the ongoing search for the next generation of information technologies.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Chemists redesign biological PHAs, 'dream' biodegradable plastics



They've been called 'dream' plastics: polyhydroxyalkanoates, or PHAs. Already the basis of a fledgling industry, they're a class of polymers naturally created by living microorganisms, or synthetically produced from biorenewable feedstocks. They're biodegradable in the ambient environment, including oceans and soil.
Published Luminous molecules



Twisted molecules play an important role in the development of organic light-emitting diodes. A team of chemists has managed to create these compounds with exactly the three-dimensional structure that they wanted. In so doing, they are smoothing the path for new and better light sources.
Published Backscattering protection in integrated photonics is impossible with existing technologies



Researchers raise fundamental questions about the proposed value of topological protection against backscattering in integrated photonics.
Published Pollution monitoring through precise detection of gold nanoparticles in woodlice



Researchers introduce a novel imaging method to detect gold nanoparticles in woodlice. Their method, known as four-wave mixing microscopy, flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles' locations. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.
Published Photonic filter separates signals from noise to support future 6G wireless communication



Researchers have developed a new chip-sized microwave photonic filter to separate communication signals from noise and suppress unwanted interference across the full radio frequency spectrum. The device is expected to help next-generation wireless communication technologies efficiently convey data in an environment that is becoming crowded with signals.
Published Cities will need more resilient electricity networks to cope with extreme weather



Dense urban areas amplify the effects of higher temperatures, due to the phenomenon of heat islands in cities. This makes cities more vulnerable to extreme climate events. Large investments in the electricity network will be necessary to cool us down during heatwaves and keep us warm during cold snaps, according to a new study.
Published New textile unravels warmth-trapping secrets of polar bear fur



Engineers have invented a fabric that concludes the 80-year quest to make a synthetic textile modeled on polar bear fur. The results are already being developed into commercially available products.
Published Toward tunable molecular switches from organic compounds



Newly synthesized organic molecules can be tuned to emit different colors depending on their molecular structures in crystal form.
Published Technology advance paves way to more realistic 3D holograms for virtual reality and more



Researchers have developed a new way to create dynamic ultrahigh-density 3D holographic projections. They now describe their new approach, called three-dimensional scattering-assisted dynamic holography (3D-SDH). They show that it can achieve a depth resolution more than three orders of magnitude greater than state-of-the-art methods for multiplane holographic projection.
Published A new type of photonic time crystal gives light a boost



Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings could lead to more efficient and robust wireless communications and significantly improved lasers.
Published Looking at magnets in the right light



Unlocking the secrets of magnetic materials requires the right illumination. Magnetic x-ray circular dichroism makes it possible to decode magnetic order in nanostructures and to assign it to different layers or chemical elements. Researchers have succeeded in implementing this unique measurement technique in the soft-x-ray range in a laser laboratory. With this development, many technologically relevant questions can now be investigated outside of scientific large-scale facilities for the first time.
Published Absolute zero in the quantum computer



Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.
Published Researchers devise new membrane mirrors for large space-based telescopes



Researchers have developed a new way to produce and shape large, high-quality mirrors that are much thinner than the primary mirrors previously used for telescopes deployed in space. The resulting mirrors are flexible enough to be rolled up and stored compactly inside a launch vehicle and then reshaped after deployment.
Published Scallop eyes as inspiration for new microscope objectives



Neuroscientists have developed innovative objectives for light microscopy by using mirrors to produce images. Their design finds correspondence in mirror telescopes used in astronomy on the one hand and the eyes of scallops on the other. The new objectives enable high-resolution imaging of tissues and organs in a much wider variety of immersion media than with conventional microscope lenses.
Published Thermal paint: MXene spray coating can harness infrared radiation for heating or cooling



An international team of researchers has found that a thin coating of MXene -- a type of two-dimensional nanomaterial -- could enhance a material's ability to trap or shed heat. The discovery, which is tied to MXene's ability to regulate the passage of ambient infrared radiation, could lead to advances in thermal clothing, heating elements and new materials for radiative heating and cooling.