Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: Optics
Published Researchers use artificial intelligence to boost image quality of metalens camera



Researchers have leveraged deep learning techniques to enhance the image quality of a metalens camera. The new approach uses artificial intelligence to turn low-quality images into high-quality ones, which could make these cameras viable for a multitude of imaging tasks including intricate microscopy applications and mobile devices.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Bio-based resins could offer recyclable future for 3D printing



A new type of recyclable resin, made from biosourced materials, has been designed for use in 3D printing applications.
Published Metalens expands Its reach from light to sound



Engineers achieve a wide field-of-hearing acoustic metalens free from aberrations.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published Speedy, secure, sustainable -- that's the future of telecom



A new device that can process information using a small amount of light could enable energy-efficient and secure communications.
Published Milestone in plasma acceleration



Scientists have made a significant advance in laser plasma acceleration. By employing an innovative method, a research team managed to substantially exceed the previous record for proton acceleration. For the first time, they achieved energies that so far have only seemed possible at much larger facilities. As the research group reported, promising applications in medicine and materials science have now become much likelier.
Published Exceptionally large transverse thermoelectric effect produced by combining thermoelectric and magnetic materials



A research team has demonstrated that a simple stack of thermoelectric and magnetic material layers can exhibit a substantially larger transverse thermoelectric effect -- energy conversion between electric and heat currents that flow orthogonally to each other within it -- than existing magnetic materials capable of exhibiting the anomalous Nernst effect. This mechanism may be used to develop new types of thermoelectric devices useful in energy harvesting and heat flux sensing.
Published Hide and seek between atoms: Find the dopant



Collaborative efforts decode the mechanism behind stabilizing cathode doping in electric vehicle batteries.
Published Transforming common soft magnets into a next-generation thermoelectric conversion materials by 3 minutes heat treatment



A research team has demonstrated that an iron-based amorphous alloy, widely used as a soft magnetic material in transformers and motors, can be transformed into a 'transverse' thermoelectric conversion material that converts electric and thermal currents in orthogonal directions, with just a short period of heat treatment. This is the first example that highlights the importance of microstructure engineering in the development of transverse thermoelectric conversion materials, and provides new design guidelines for materials development to realize environmentally friendly power generation and thermal management technologies using magnetic materials.
Published Good vibrations: New tech may lead to smaller, more powerful wireless devices



What if your earbuds could do everything your smartphone can, but better? A new class of synthetic materials could allow for smaller devices that use less power.
Published Researchers harness blurred light to 3D print high quality optical components



Researchers have developed a new 3D printing method called blurred tomography that can rapidly produce microlenses with commercial-level optical quality. The new method may make it easier and faster to design and fabricate a variety of optical devices.
Published Discover optimal conditions for mass production of ultraviolet holograms



Scientists delve into the composition of nanocomposites for ultraviolet metasurface fabrication.
Published A new, low-cost, high-efficiency photonic integrated circuit



Researchers have developed scalable photonic integrated circuits, based on lithium tantalate, marking a significant advancement in optical technologies with potential to widespread commercial applications.
Published Efficacy of solar panels boosted



Solar energy is a crucial asset in the fight against climate change, and researchers have now devised a smart approach to optimize its effectiveness. Their innovative method includes incorporating artificial ground reflectors, a simple yet powerful enhancement.
Published Tiny displacements, giant changes in optical properties



Researchers reveal a new pathway for designing optical materials using the degree of atomic disorder. The researchers anticipate developing crystals that enable advanced infrared imaging in low light conditions, or to enhance medical imaging devices.
Published Researchers 'unzip' 2D materials with lasers



Researchers used commercially available tabletop lasers to create tiny, atomically sharp nanostructures in samples of a layered 2D material called hexagonal Boron Nitride (hBN). The new nanopatterning technique is a simple way to modify materials with light--and it doesn't involve an expensive and resource-intensive clean room.
Published New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques



Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.
Published Tweaking isotopes sheds light on promising approach to engineer semiconductors



Scientists have demonstrated that small changes in the isotopic content of thin semiconductor materials can influence their optical and electronic properties, possibly opening the way to new and advanced designs with the semiconductors.
Published Physicists arrange atoms in extremely close proximity



Physicists developed a technique to arrange atoms in much closer proximity than previously possible, down to 50 nanometers. The group plans to use the method to manipulate atoms into configurations that could generate the first purely magnetic quantum gate -- a key building block for a new type of quantum computer.