Showing 20 articles starting at article 841
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: Optics
Published Quantum lidar prototype acquires real-time 3D images while fully submerged underwater



Researchers have demonstrated a prototype lidar system that uses quantum detection technology to acquire 3D images while submerged underwater. The high sensitivity of this system could allow it to capture detailed information even in extremely low-light conditions found underwater.
Published Researchers detect and classify multiple objects without images



Researchers have developed a new high-speed way to detect the location, size and category of multiple objects without acquiring images or requiring complex scene reconstruction. Because the new approach greatly decreases the computing power necessary for object detection, it could be useful for identifying hazards while driving.
Published 'Gluing' soft materials without glue



If you're a fan of arts and crafts, you're likely familiar with the messy, sticky, frustration-inducing nature of liquid glues. But researchers now have a brand-new way to weld squishy stuff together without the need for glue at all. They've demonstrated a universal, 'electroadhesion' technique that can adhere soft materials to each other just by running electricity through them.
Published Engineers tap into good vibrations to power the Internet of Things



In a world hungry for clean energy, engineers have created a new material that converts the simple mechanical vibrations all around us into electricity to power sensors in everything from pacemakers to spacecraft.
Published Self-folding origami machines powered by chemical reaction



Scientists have harnessed chemical reactions to make microscale origami machines self-fold -- freeing them from the liquids in which they usually function, so they can operate in dry environments and at room temperature.
Published Quantum entanglement of photons doubles microscope resolution



Using a "spooky" phenomenon of quantum physics, researchers have discovered a way to double the resolution of light microscopes.
Published Prolonged power outages, often caused by weather events, hit some parts of the U.S. harder than others



New research found that Americans already bearing the brunt of climate change and health inequities are most at risk of impact by a lengthy power outage.
Published Previously unknown intercellular electricity may power biology



Researchers have discovered that the electrical fields and activity that exist through a cell's membrane also exist within and around another type of cellular structure called biological condensates. Like oil droplets floating in water, these structures exist because of differences in density. Their foundational discovery could change the way researchers think about biological chemistry. It could also provide a clue as to how the first life on Earth harnessed the energy needed to arise.
Published Is the ocean a solution for ushering in the era of environmentally friendly energy?



Researchers confirm the superiority of seawater batteries that use chelating agents.
Published Tunneling electrons



By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.
Published Ingestible 'electroceutical' capsule stimulates hunger-regulating hormone



Engineers have shown that by using an ingestible capsule that delivers an electrical current to the cells they can stimulate the release of the hormone ghrelin. This approach could prove useful for treating diseases that involve nausea or loss of appetite, such as anorexia or cachexia.
Published Nifty nanoparticles help 'peel back the curtain' into the world of super small things



Physicists are using nanoparticles to develop new sources of light that will allow us to 'peel back the curtain' into the world of extremely small objects -- thousands of times smaller than a human hair -- with major gains for medical and other technologies.
Published Scientists demonstrate unprecedented sensitivity in measuring time delay between two photons



A team of researchers has demonstrated the ultimate sensitivity allowed by quantum physics in measuring the time delay between two photons. This breakthrough has significant implications for a range of applications, including more feasible imaging of nanostructures, including biological samples, and nanomaterial surfaces, as well as quantum enhanced estimation based on frequency-resolved boson sampling in optical networks.
Published Transforming highways for high-speed travel and energy transport



Researchers developed a proof of concept for a superconducting highway that could transport vehicles and electricity, cooling the necessary superconductors with a pipeline of liquid hydrogen. Most magnetic levitation designs feature the superconductor inside the vehicle, which is suspended above a magnetic track. The authors decided to flip that arrangement upside down, putting the superconductor on the ground and giving each vehicle a magnet. The result is a system with multiple uses, placing it within the realm of affordability.
Published Cryo-imaging lifts the lid on fuel cell catalyst layers



Thanks to a novel combination of cryogenic transmission electron tomography and deep learning, EPFL researchers have provided a first look at the nanostructure of platinum catalyst layers, revealing how they could be optimized for fuel cell efficiency.
Published Cheaper method for making woven displays and smart fabrics -- of any size or shape



Researchers have developed next-generation smart textiles -- incorporating LEDs, sensors, energy harvesting, and storage -- that can be produced inexpensively, in any shape or size, using the same machines used to make the clothing we wear every day.
Published Quantum entanglement could make accelerometers and dark matter sensors more accurate



The 'spooky action at a distance' that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.
Published Versatile, high-speed, and efficient crystal actuation with photothermally resonated natural vibrations



Mechanically responsive molecular crystals are extremely useful in soft robotics, which requires a versatile actuation technology. Crystals driven by the photothermal effect are particularly promising for achieving high-speed actuation. However, the response (bending) observed in these crystals is usually small. Now, scientists address this issue by inducing large resonated natural vibrations in anisole crystals with UV light illumination at the natural vibration frequency of the crystal.
Published Embracing variations: Physicists analyze noise in Lambda-type quantum memory



In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation



Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.