Showing 20 articles starting at article 981
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: Optics
Published Engineers discover a new way to control atomic nuclei as 'qubits'


Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.
Published When the light is neither 'on' nor 'off' in the nanoworld


Scientists detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.
Published Atom-thin walls could smash size, memory barriers in next-gen devices


For all of the still-indistinguishable-from-magic wizardry packed into the three pounds of the adult human brain, it obeys the same rule as the other living tissue it controls: Oxygen is a must. So it was with a touch of irony that a scientists offered his explanation for a technological wonder -- movable, data-covered walls mere atoms wide -- that may eventually help computers behave more like a brain. 'There was unambiguous evidence that oxygen vacancies are responsible for this,' Tsymbal said.
Published Chiral phonons create spin current without needing magnetic materials


Researchers chiral phonons to convert wasted heat into spin information -- without needing magnetic materials. The finding could lead to new classes of less expensive, energy-efficient spintronic devices for use in applications ranging from computational memory to power grids.
Published Chromo-encryption method encodes secrets with color


In a new approach to security that unites technology and art, E researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.
Published Research reveals thermal instability of solar cells but offers a bright path forward


Researchers reveal the thermal instability that happens within the cells' interface layers, but also offers a path forward towards reliability and efficiency for halide perovskite solar technology.
Published Novel microscope developed to design better high-performance batteries


A research team has developed an operando reflection interference microscope (RIM) that provides a better understanding of how batteries work, which has significant implications for the next generation of batteries.
Published Compact, non-mechanical 3D lidar system could make autonomous driving safer


A new system represents the first time that the capabilities of conventional beam-scanning lidar systems have been combined with those of a newer 3D approach known as flash lidar. The nonmechanical 3D lidar system is compact enough to fit in the palm of the hand and solves issues of detecting and tracking poorly reflective objects.
Published Make them thin enough, and antiferroelectric materials become ferroelectric


Antiferroelectric materials have electrical properties that make them advantageous for use in high-density energy storage applications. Researchers have now discovered a size threshold beyond which antiferroelectrics lose those properties, becoming ferroelectric.
Published Fighting climate change: Ruthenium complexes for carbon dioxide reduction to valuable chemicals


Excessive use of fossil fuels leads to undesired carbon dioxide (CO2) generation, accelerating climate change. One way to tackle this is by converting CO2 into value-added chemicals. On this front, researchers have recently utilized a novel redox couple, for the purpose.
Published Controllable 'defects' improve performance of lithium-ion batteries


Some defects can be good. A new study shows that laser-induced defects in lithium-ion battery materials improve the performance of the battery.
Published Distortion-free forms of structured light


Research offers a new approach to studying complex light in complex systems, such as transporting classical and quantum light through optical fiber, underwater channels, living tissue and other highly aberrated systems.
Published This loofah-inspired, sun-driven gel could purify all the water you'll need in a day


Access to clean water is being strained as the human population increases and contamination impacts freshwater sources. Devices currently in development that clean up dirty water using sunlight can only produce up to a few gallons of water each day. But now, researchers in ACS Central Science report how loofah sponges inspired a sunlight-powered porous hydrogel that could potentially purify enough water to satisfy someone's daily needs -- even when it's cloudy.
Published Severe weather straining electrical grids: New research mitigates demand surges, increasing grid reliability and reducing costs


Concerns are mounting among policymakers and utility companies amid the impact of severe weather on the nation's electrical grids. In recent months, electrical grids in Texas have been tested to the point of near failure. So it seems like perfect timing that new research identifies a new method that provides the best way to utilize 'direct load control contracts' to mitigate electricity demand surges, increase grid reliability and reduce electricity cost. All of this right down to the individual household.
Published New sodium, aluminum battery aims to integrate renewables for grid resiliency


A new sodium battery technology shows promise for helping integrate renewable energy into the electric grid. The battery uses Earth-abundant raw materials such as aluminum and sodium.
Published New method for generating spinning thermal radiation uncovered



Researchers have made a groundbreaking discovery in the field of thermal radiation, uncovering a new method for generating spinning thermal radiation in a controlled and efficient manner using artificially structured surfaces, known as metasurfaces.
Published Entangled atoms cross quantum network from one lab to another


Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.
Published Researchers devise a new path toward 'quantum light'


Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.
Published A quasiparticle that can transfer heat under electrical control


Scientists have found the secret behind a property of solid materials known as ferroelectrics, showing that quasiparticles moving in wave-like patterns among vibrating atoms carry enough heat to turn the material into a thermal switch when an electrical field is applied externally.
Published Passive radiative cooling can now be controlled electrically


Energy-efficient ways of cooling buildings and vehicles will be required in a changing climate. Researchers have now shown that electrical tuning of passive radiative cooling can be used to control temperatures of a material at ambient temperatures and air pressure.