Showing 20 articles starting at article 321

< Previous 20 articles        Next 20 articles >

Categories: Energy: Fossil Fuels, Physics: Optics

Return to the site home page

Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geography
Published

Green ammonia could decarbonize 60% of global shipping when offered at just 10 regional fuel ports      (via sciencedaily.com)     Original source 

A study has found that green ammonia could be used to fulfill the fuel demands of over 60% of global shipping by targeting just the top 10 regional fuel ports. Researchers looked at the production costs of ammonia which are similar to very low sulphur fuels, and concluded that the fuel could be a viable option to help decarbonize international shipping by 2050.

Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

No win-win? Input-efficient technologies might not be so efficient after all      (via sciencedaily.com)     Original source 

To address natural resource scarcity, pollution, and other harmful effects of climate change, some scientists and policymakers emphasize the adoption of input-efficient technologies like water-saving devices and fuel-saving stoves. Proponents often refer to these input-efficient technologies as 'win-win,' for the benefits to their users and to the environment, and lament their low adoption rates by consumers, in what they call an 'efficiency paradox.' A new paper examines this paradox and finds that the benefits to consumers from input-efficiency adoption are, on average, negative.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: General Offbeat: Plants and Animals Physics: Optics
Published

Engineers invent octopus-inspired technology that can deceive and signal      (via sciencedaily.com)     Original source 

With a split-second muscle contraction, the greater blue-ringed octopus can change the size and color of the namesake patterns on its skin for purposes of deception, camouflage and signaling. Researchers have drawn inspiration from this natural wonder to develop a technological platform with similar capabilities for use in a variety of fields, including the military, medicine, robotics and sustainable energy.

Engineering: Nanotechnology Environmental: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers boost signal amplification in perovskite nanosheets      (via sciencedaily.com)     Original source 

Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.

Chemistry: General Energy: Fossil Fuels Energy: Technology Engineering: Graphene Physics: General
Published

Better microelectronics from coal      (via sciencedaily.com)     Original source 

Coal is an abundant resource in the United States that has, unfortunately, contributed to climate change through its use as a fossil fuel. As the country transitions to other means of energy production, it will be important to consider and reevaluate coal's economic role. Coal may actually play a vital role in next-generation electronic devices.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Breakthrough in organic semiconductor synthesis paves the way for advanced electronic devices      (via sciencedaily.com)     Original source 

A research team has achieved a significant breakthrough in the field of organic semiconductors. Their successful synthesis and characterization of a novel molecule called 'BNBN anthracene' has opened up new possibilities for the development of advanced electronic devices.

Physics: Optics
Published

Researchers succeed in high-sensitivity terahertz detection by 2D plasmons in transistors      (via sciencedaily.com)     Original source 

Researchers have developed a high-speed, high-sensitivity terahertz-wave detector operating at room temperature, paving the way for advancements in the development of next generation 6G/7G technology.

Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General
Published

New material allows for better hydrogen-based batteries and fuel cells      (via sciencedaily.com)     Original source 

Researchers have developed a solid electrolyte for transporting hydride ions at room temperature. This breakthrough means that the full advantages of hydrogen-based solid-state batteries and fuel cells can be had without the need for constant hydration. This will reduce their complexity and cost, which is essential for advancing towards a practical hydrogen-based energy economy.

Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Laser-driving a 2D material      (via sciencedaily.com)     Original source 

Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.

Physics: Optics Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Pancake stack of films on a balloon most accurate gamma-ray telescope      (via sciencedaily.com)     Original source 

A pancake stack of radioactivity-sensitive films carried through the sky by a balloon was able to take the world's most accurate picture of a neutron star's gamma ray beam. To achieve this, researchers combined the oldest method of capturing radioactive radiation with the newest data capturing techniques and a clever time-recording device.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting      (via sciencedaily.com)     Original source 

Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.

Computer Science: Virtual Reality (VR) Physics: Optics
Published

360-degree head-up display view could warn drivers of road obstacles in real time      (via sciencedaily.com)     Original source 

Researchers have developed an augmented reality head-up display that could improve road safety by displaying potential hazards as high-resolution three-dimensional holograms directly in a driver's field of vision in real time.

Physics: Optics
Published

Aerogel can become the key to future terahertz technologies      (via sciencedaily.com)     Original source 

High-frequency terahertz waves have great potential for a number of applications including next-generation medical imaging and communication. Researchers have shown that the transmission of terahertz light through an aerogel made of cellulose and a conducting polymer can be tuned. This is an important step to unlock more applications for terahertz waves.

Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather Physics: Optics
Published

Snowflakes swirling in turbulent air as they fall through a laser light sheet      (via sciencedaily.com)     Original source 

A winter wonderland calls to mind piles of fluffy, glistening snow. But to reach the ground, snowflakes are swept into the turbulent atmosphere, swirling through the air instead of plummeting directly to the ground. Researchers found that regardless of turbulence or snowflake type, acceleration follows a universal statistical pattern that can be described as an exponential distribution.

Biology: Biochemistry Biology: General Biology: Microbiology Chemistry: Biochemistry Physics: Optics
Published

Gentle x-ray imaging of small living specimens      (via sciencedaily.com)     Original source 

Researchers all over Germany have developed a new system for X-ray imaging, which is suited for both living specimens and sensitive materials. The system records images of micrometer resolution at a minimum radiation dose. In a pilot study, the researchers tested their method on living parasitic wasps and observed them for more than 30 minutes.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

First observation of how water molecules move near a metal electrode      (via sciencedaily.com)     Original source 

A collaborative team of experimental and computational physical chemists has made an important discovery in the field of electrochemistry, shedding light on the movement of water molecules near metal electrodes. This research holds profound implications for the advancement of next-generation batteries utilizing aqueous electrolytes.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices      (via sciencedaily.com)     Original source 

Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A promising pairing: Scientists demonstrate new combination of materials for quantum science      (via sciencedaily.com)     Original source 

For the first time, scientists publish results on a new chip composed of diamond and lithium niobate. The results demonstrate the combination as a promising candidate for quantum devices.

Physics: Optics
Published

This next generation blue light could potentially promote or hinder sleep on command      (via sciencedaily.com)     Original source 

Blue light from LED lamps and consumer electronics can mess with your sleep because it disrupts production of the natural sleep hormone melatonin. Tinted glasses or displays in night mode can mask, but don't remove, a portion of the disruptive wavelengths. But now, researchers report that they have designed more 'human-centric' LEDs that could potentially enhance drowsiness or alertness on command.