Showing 20 articles starting at article 241

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Biometric, Physics: Optics

Return to the site home page

Physics: General Physics: Optics
Published

Movies of ultrafast electronic circuitry in space and time      (via sciencedaily.com)     Original source 

Researchers have successfully filmed the operations of extremely fast electronic circuitry in an electron microscope at a bandwidth of tens of terahertz.

Energy: Nuclear Physics: General Physics: Optics Physics: Quantum Physics
Published

Laser-focused look at spinning electrons shatters world record for precision      (via sciencedaily.com)     Original source 

Nuclear physicists have shattered a nearly 30-year-old record for precision in electron beam polarimetry. The groundbreaking result sets the stage for high-profile experiments that could open the door to new physics discoveries.

Physics: General Physics: Optics
Published

Reimagining electron microscopy: Bringing high-end resolution to lower-cost microscopes      (via sciencedaily.com)     Original source 

Researchers have shown that expensive aberration-corrected microscopes are no longer required to achieve record-breaking microscopic resolution.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Technology Environmental: General Physics: Optics
Published

New world record for CIGS solar cells      (via sciencedaily.com)     Original source 

A new record for electrical energy generation from CIGS solar cells has been reached. Scientists have achieved a 23.64 percent efficiency.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Measuring the properties of light: Scientists realize new method for determining quantum states      (via sciencedaily.com)     Original source 

Scientists have used a new method to determine the characteristics of optical, i.e. light-based, quantum states. For the first time, they are using certain photon detectors -- devices that can detect individual light particles -- for so-called homodyne detection. The ability to characterize optical quantum states makes the method an essential tool for quantum information processing.

Physics: General Physics: Optics
Published

Photon upconversion: Steering light with supercritical coupling      (via sciencedaily.com)     Original source 

Researchers have unveiled a novel concept termed 'supercritical coupling' that enables several folds increase in photon upconversion efficiency. This discovery not only challenges existing paradigms, but also opens a new direction in the control of light emission.

Physics: Optics
Published

Charting new paths in AI learning      (via sciencedaily.com)     Original source 

Physicists explore different AI learning methods, which can lead to smarter and more efficient models.

Chemistry: Biochemistry Energy: Alternative Fuels Physics: Optics
Published

Scientists invent ultra-thin, minimally-invasive pacemaker controlled by light      (via sciencedaily.com)     Original source 

A team of researchers has developed a wireless device, powered by light, that can be implanted to regulate cardiovascular or neural activity in the body. The feather-light membranes, thinner than a human hair, can be inserted with minimally invasive surgery and contain no moving parts.

Biology: Biochemistry Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers achieve breakthrough in quantum sensing      (via sciencedaily.com)     Original source 

A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.

Engineering: Biometric
Published

This tiny, tamper-proof ID tag can authenticate almost anything      (via sciencedaily.com)     Original source 

A cryptographic tag uses terahertz waves to authenticate items by recognizing the unique pattern of microscopic metal particles that are mixed into the glue that sticks the tag to the item's surface.

Computer Science: General Energy: Technology Engineering: Nanotechnology Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

New chip opens door to AI computing at light speed      (via sciencedaily.com)     Original source 

Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.

Engineering: Graphene Physics: Optics
Published

Two-dimensional waveguides discovered      (via sciencedaily.com)     Original source 

Scientists announce the discovery of slab waveguides based on the two-dimensional material hexagonal boron nitride.

Chemistry: Biochemistry Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

A new optical metamaterial makes true one-way glass possible      (via sciencedaily.com)     Original source 

Researchers have discovered how to make an optical metamaterial that would underpin a variety of new technologies.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Exploring the effect of ring closing on fluorescence of supramolecular polymers      (via sciencedaily.com)     Original source 

The properties of supramolecular polymers are dictated by the self-assembled state of the molecules. However, not much is known about the impact of morphologies on the properties of nano- and mesoscopic-scale polymeric assemblies. Recently, a research team demonstrated how terminus-free toroids and random coils derived from the same luminescent molecule show different photophysical properties. The team also presented a novel method for purifying the toroidal structure.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How electron spectroscopy measures exciton 'holes'      (via sciencedaily.com)     Original source 

Semiconductors are ubiquitous in modern technology, working to either enable or prevent the flow of electricity. In order to understand the potential of two-dimensional semiconductors for future computer and photovoltaic technologies, researchers investigated the bond that builds between the electrons and holes contained in these materials. By using a special method to break up the bond between electrons and holes, they were able to gain a microscopic insight into charge transfer processes across a semiconductor interface.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Molecular manganese complex as superphotooxidant      (via sciencedaily.com)     Original source 

Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants, including chromium, iron, and cobalt. All these photocatalysts require high energy light for excitation and their oxidizing power has not yet been fully exploited. Furthermore, precious and hence expensive metals are the decisive ingredients in most cases. A team of researchers has now developed a new molecular system based on the element manganese. Manganese, as opposed to precious metals, is the third most abundant metal after iron and titanium and hence widely available and very cheap.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Technique could improve the sensitivity of quantum sensing devices      (via sciencedaily.com)     Original source 

A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.

Physics: Optics
Published

Spiral-shaped lens provides clear vision at a range of distances and lighting conditions      (via sciencedaily.com)     Original source 

Researchers have developed a spiral-shaped lens that maintains clear focus at different distances in varying light conditions. The new lens works much like progressive lenses used for vision correction but without the distortions typically seen with those lenses. It could help advance contact lens technologies, intraocular implants for cataracts and miniaturized imaging systems.