Showing 20 articles starting at article 841

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Nanotechnology, Physics: Optics

Return to the site home page

Biology: Evolutionary Biology: Microbiology Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Scientists transform algae into unique functional perovskites with tunable properties      (via sciencedaily.com) 

Scientists have transformed single-cell algae into functional perovskite materials. The team has converted mineral shells of algae into lead halide perovskites with tunable physical properties. The new perovskites have unique nano-architectures unachievable by conventional synthetic production. The method can be applied to the mass production of perovskites with tunable structural and electro-optical properties from single-celled organisms.

Energy: Technology Engineering: Nanotechnology
Published

Are piezoelectrics good for generating electricity? Perhaps, but we must decide how to evaluate them      (via sciencedaily.com) 

A 'best practice' protocol for researchers developing piezoelectric materials has been developed by scientists. The protocol was developed by an international team led by physicists in response to findings that experimental reports lack consistency. The researchers made the shocking discovery that nine out of 10 scientific papers miss experimental information that is crucial to ensure the reproducibility of the reported work.

Chemistry: Biochemistry Physics: General Physics: Optics
Published

Scientists demonstrate time reflection of electromagnetic waves in a groundbreaking experiment      (via sciencedaily.com)     Original source 

Scientists have hypothesized for over six decades the possibility of observing a form of wave reflections known as temporal, or time, reflections. Researchers detail a breakthrough experiment in which they were able to observe time reflections of electromagnetic signals in a tailored metamaterial.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

3D internal structure of rechargeable batteries revealed      (via sciencedaily.com) 

Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.

Physics: Optics
Published

High-speed super-resolution microscopy via temporal compression      (via sciencedaily.com) 

Recently, a research team resolved the contradiction between spatial resolution and imaging speed in optical microscopy. They achieved high-speed super-resolution by developing an effective technique termed temporal compressive super-resolution microscopy (TCSRM). TCSRM merges enhanced temporal compressive microscopy with deep-learning-based super-resolution image reconstruction. Enhanced temporal compressive microscopy improves the imaging speed by reconstructing multiple images from one compressed image, and the deep-learning-based image reconstruction achieves the super-resolution effect without reduction in imaging speed. Their iterative image reconstruction algorithm contains motion estimation, merging estimation, scene correction, and super-resolution processing to extract the super-resolution image sequence from compressed and reference measurements.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Researchers find access to new fluorescent materials      (via sciencedaily.com) 

Fluorescence is a fascinating natural phenomenon. It is based on the fact that certain materials can absorb light of a certain wavelength and then emit light of a different wavelength. Fluorescent materials play an important role in our everyday lives, for example in modern screens. Due to the high demand for applications, science is constantly striving to produce new and easily accessible molecules with high fluorescence efficiency.

Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Microscopy: Highest resolution in three dimensions      (via sciencedaily.com) 

Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures      (via sciencedaily.com) 

Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.

Physics: Optics
Published

Hotter than infinity: Light pulses can behave like an exotic gas      (via sciencedaily.com) 

In our modern society huge amounts of data are transmitted every day, mainly as short optical pulses propagating through glass fibers. With the steadily increasing density of such optical signals, their interaction grows, which can lead to data loss. Physicists are now investigating how to control large numbers of optical pulses as precisely as possible to reduce the effect of such interactions. To this end they have monitored an ensemble of optical pulses as they propagated through an optical fiber and have found that it follows fixed rules -- albeit mainly those of thermodynamics.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Knots smaller than human hair make materials unusually tough      (via sciencedaily.com) 

A micro-architected material made from tiny knots proves tougher and more durable than unknotted counterparts.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Ringing an electronic wave: Elusive massive phason observed in a charge density wave      (via sciencedaily.com) 

Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Colloids get creative to pave the way for next generation photonics      (via sciencedaily.com) 

Scientists have devised a way of fabricating a complex structure, previously found only in nature, to open up new ways for manipulating and controlling light.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Computer Science: General Energy: Technology Engineering: Nanotechnology Physics: General
Published

New kind of transistor could shrink communications devices on smartphones      (via sciencedaily.com) 

One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Enhancing at-home COVID tests with glow-in-the dark materials      (via sciencedaily.com) 

Researchers are using glow-in-the-dark materials to enhance and improve rapid COVID-19 home tests.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Two-dimensional quantum freeze      (via sciencedaily.com) 

Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.

Chemistry: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits      (via sciencedaily.com) 

Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.

Engineering: Nanotechnology Physics: Optics
Published

Bending 2D nanomaterial could 'switch on' future technologies      (via sciencedaily.com) 

Materials scientists have uncovered a property of ferroelectric 2D materials that could be exploited in future devices.

Chemistry: Inorganic Chemistry Physics: Optics
Published

The positive outlooks of studying negatively-charged chiral molecules      (via sciencedaily.com) 

The ability to distinguish two chiral enantiomers is an essential analytical capability for chemical industries including pharmaceutical companies, flavor/odor engineering and forensic science. A new wave of chiral optical methods have shown significant improvements in chiral sensitivity, compared to their predecessors, leading to potential analytical advantages for chiral discrimination.