Showing 20 articles starting at article 1
Categories: Physics: Optics, Physics: Quantum Physics
Published Unconventional interface superconductor could benefit quantum computing



A multi-institutional team of scientists has developed a new superconductor material that could potentially be used in quantum computing and be a candidate 'topological superconductor.'
Published Langbeinites show talents as 3D quantum spin liquids



A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behavior that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.
Published Kagome superconductor makes waves



Superconductivity theory proposed by physics team validated in international experiment: Cooper pairs display wave-like distribution in Kagome metals, enabling new technological applications like superconducting diodes.
Published Toward a code-breaking quantum computer



Building on a landmark algorithm, researchers propose a way to make a smaller and more noise-tolerant quantum factoring circuit for cryptography.
Published AI tackles one of the most difficult challenges in quantum chemistry



New research using neural networks, a form of brain-inspired AI, proposes a solution to the tough challenge of modelling the states of molecules.
Published Physicists shine new light on ultra-fast atomic processes



Scientists report incredibly small time delays in a molecule's electron activity when the particles are exposed to X-rays. To measure these tiny high-speed events, known as attoseconds, researchers used a laser to generate intense X-ray flashes that allowed them to map the inner workings of an atom.
Published Freeze-frame: World's fastest microscope that can see electrons in motion



A team of researchers has developed the first transmission electron microscope which operates at the temporal resolution of a single attosecond, allowing for the first still-image of an electron in motion.
Published Chalk-based coating creates a cooling fabric



In the scorching heat of summer, anyone who spends time outside could benefit from a cooling fabric. While there are some textiles that reflect the sun's rays or wick heat away, current options require boutique fibers or complex manufacturing processes. But now, demonstrations of a durable chalk-based coating show it can cool the air underneath treated fabric by up to 8 degrees Fahrenheit.
Published First visualization of valence electrons reveals fundamental nature of chemical bonding



The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.
Published Quality control: Neatly arranging crystal growth to make fine thin films



Researchers have succeeded in forming metal-organic framework thin films on a substrate while controlling the growth direction of crystals so that they are arranged neatly without gaps. The resulting thin films of unprecedented high quality can be expected for use as optical sensors, optical elements, and transparent gas adsorption sheets.
Published New heaviest exotic antimatter nucleus



Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.
Published Explanation found for X-ray radiation from black holes



Researchers have succeeded in something that has been pursued since the 1970s: explaining the X-ray radiation from the black hole surroundings. The radiation originates from the combined effect of the chaotic movements of magnetic fields and turbulent plasma gas.
Published Scientists harness quantum microprocessor chips for revolutionary molecular spectroscopy simulation



Engineering researchers have successfully developed a quantum microprocessor chip for molecular spectroscopy simulation of actual large-structured and complex molecules.
Published Expanding a child's heart implant with light



Children born with certain heart defects undergo a series of invasive surgeries early in life. The first surgery includes implantation of a shunt to improve blood flow. However, as children grow, the shunt must be replaced to accommodate their changing bodies. Now, researchers report designing a shunt that expands when activated by light. This device could reduce the number of open-chest surgeries these children receive.
Published Large Hadron Collider pipe brings search for elusive magnetic monopole closer than ever



New research using a decommissioned section of the beam pipe from the Large Hadron Collider (LHC) at CERN has bought scientists closer than ever before to test whether magnetic monopoles exist. Scientists have revealed the most stringent constraints yet on the existence of magnetic monopoles, pushing the boundaries of what is known about these elusive particles.
Published New insight Into behavior of electrons



Physicists have uncovered new states of matter by exploring the behavior of flatland electrons in extreme conditions, revealing insights that could impact quantum computing and advanced materials.
Published New microscope offers faster, high-resolution brain imaging



Researchers have developed a new two-photon fluorescence microscope that captures high-speed images of neural activity at cellular resolution. By imaging much faster and with less harm to brain tissue than traditional two-photon microscopy, the new approach could provide a clearer view of how neurons communicate in real time, leading to new insights into brain function and neurological diseases.
Published Quantum pumping in molecular junctions



Researchers have developed a new theoretical modelling technique that could potentially be used in the development of switches or amplifiers in molecular electronics.
Published Advancing modular quantum information processing



A team of physicists envisions a modular system for scaling quantum processors with a flexible way of linking qubits over long distances to enable them to work in concert to perform quantum operations. The ability to carry out such correlated or 'entangling' operations between linked qubits is the basis of the enhanced power quantum computing holds compared with current computers.
Published Physicists throw world's smallest disco party



A new milestone has been set for levitated optomechanics as a group of scientists observed the Berry phase of electron spins in nano-sized diamonds levitated in vacuum.