Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Physics: Optics, Physics: Quantum Physics

Return to the site home page

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough may clear major hurdle for quantum computers      (via sciencedaily.com)     Original source 

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Researchers film energy materials as they form      (via sciencedaily.com)     Original source 

Shooting a movie in the lab requires special equipment. Especially when the actors are molecules -- invisible to the naked eye -- reacting with each other. 'Imagine trying to film tiny lava flows during a volcanic eruption. Your smartphone camera wouldn't be up to the job.

Physics: Optics
Published

Towards wider 5G network coverage: Novel wirelessly powered relay transceiver      (via sciencedaily.com)     Original source 

A novel 256-element wirelessly powered transceiver array for non-line-of-sight 5G communication, featuring efficient wireless power transmission and high-power conversion efficiency, has been designed. The innovative design can enhance the 5G network coverage even to places with link blockage, improving flexibility and coverage area, and potentially making high-speed, low-latency communication more accessible.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Energy: Alternative Fuels Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material puts eco-friendly methanol conversion within reach      (via sciencedaily.com)     Original source 

Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: Optics
Published

Custom-made molecules designed to be invisible while absorbing near-infrared light      (via sciencedaily.com)     Original source 

Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Physics: Optics
Published

MXenes for energy storage      (via sciencedaily.com)     Original source 

A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Chemistry: Biochemistry Chemistry: General Environmental: General Geoscience: Geochemistry Physics: Optics
Published

When bacteria are buckling      (via sciencedaily.com)     Original source 

Filamentous cyanobacteria buckle at a certain length when they encounter an obstacle. The results provide an important basis for the use of cyanobacteria in modern biotechnology.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Reduction of esters by a novel photocatalyst      (via sciencedaily.com)     Original source 

A ubiquitous compound, called ester can be broken down to produce desirable alcohols and other chemicals for use across industries including pharmaceuticals and cosmetics, but the process can be costly, both financially and in terms of the environment. Researchers developed a novel photocatalyst 'N-BAP.' When irradiated with blue light, the photocatalyst reduces esters in the presence of oxalate, a negatively charged molecule found widely in nature, resulting in the desired alcohols.

Computer Science: Quantum Computers Geoscience: Earth Science Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum entanglement measures Earth rotation      (via sciencedaily.com)     Original source 

Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.

Physics: Optics
Published

New approach to identifying altermagnetic materials      (via sciencedaily.com)     Original source 

An international team has discovered a spectrum characteristic of an altermagnetic material with X-ray magnetic circular dichroism.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A liquid crystal source of photon pairs      (via sciencedaily.com)     Original source 

Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.

Chemistry: Biochemistry Physics: General Physics: Optics
Published

Novel insights into fluorescent 'dark states' illuminate ways forward for improved imaging      (via sciencedaily.com)     Original source 

Scientists address decades-long problem in the field of single-molecule fluorescence resonance energy transfer, paving the way for more accurate experiments.

Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Physics: Optics
Published

New fabric makes urban heat islands more bearable      (via sciencedaily.com)     Original source 

Researchers detail a new wearable fabric that can help urban residents survive the worst impacts of massive heat caused by global climate change, with applications in clothing, building and car design, and food storage. By addressing both direct solar heating and the thermal radiation emitting from pavement and buildings in urban heat islands, the material kept 2.3 degrees Celsius (4.1 degrees Fahrenheit) cooler than the broadband emitter fabric used for outdoor endurance sports and 8.9 degrees Celsius (16 degrees Fahrenheit) cooler than the commercialized silk commonly used for shirts, dresses and other summer clothing.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Pair plasmas found in deep space can now be generated in the lab      (via sciencedaily.com)     Original source 

Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.

Computer Science: Quantum Computers Geoscience: Earth Science Geoscience: Severe Weather Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum data assimilation: A quantum leap in weather prediction      (via sciencedaily.com)     Original source 

Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.

Chemistry: General Engineering: Nanotechnology Offbeat: General Physics: Optics
Published

Nanosized blocks spontaneously assemble in water to create tiny floating checkerboards      (via sciencedaily.com)     Original source 

Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work presents a simple approach to create complex nanostructures through a technique called self-assembly.

Offbeat: General Physics: Optics
Published

Researchers leverage inkjet printing to make a portable multispectral 3D camera      (via sciencedaily.com)     Original source 

Researchers have used inkjet printing to create a compact multispectral version of a light field camera. The camera, which fits in the palm of the hand, could be useful for many applications including autonomous driving, classification of recycled materials and remote sensing.

Biology: General Biology: Microbiology Physics: Optics
Published

Scientists adapt astronomy method to unblur microscopy images      (via sciencedaily.com)     Original source 

Researchers have adapted a class of techniques employed in astronomy to unblur images of far-away galaxies for use in the life sciences, providing biologists with a faster and cheaper way to get clearer and sharper microscopy images.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Uncovering the nature of emergent magnetic monopoles      (via sciencedaily.com)     Original source 

To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.