Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Physics: Optics, Physics: Quantum Physics
Published First experimental evidence of hopfions in crystals opens up new dimension for future technology



Hopfions, magnetic spin structures predicted decades ago, have become a hot and challenging research topic in recent years. New findings open up new fields in experimental physics: identifying other crystals in which hopfions are stable, studying how hopfions interact with electric and spin currents, hopfion dynamics, and more.
Published Long in the Bluetooth: Scientists develop a more efficient way to transmit data between our devices



Researchers have developed a more energy efficient way of connecting our personal devices. New technology consumes less power than Bluetooth and can improve battery life of tech accessories, including earbuds and fitness trackers. Future applications could see us unlocking a door by touching its handle or shaking hands to exchange phone numbers.
Published Research reveals rare metal could offer revolutionary switch for future quantum devices



Quantum scientists have discovered a rare phenomenon that could hold the key to creating a 'perfect switch' in quantum devices which flips between being an insulator and superconductor.
Published A deep-sea fish inspired researchers to develop supramolecular light-driven machinery



Chemists have developed a bioinspired supramolecular approach to convert photo-switchable molecules from their stable state into metastable one with low-energy red light. Their work enables fast, highly selective, and efficient switching, providing new tools for energy storage, activation of drugs with light, and sensing applications.
Published Three-pronged approach discerns qualities of quantum spin liquids



In 1973, physicist Phil Anderson hypothesized that the quantum spin liquid, or QSL, state existed on some triangular lattices, but he lacked the tools to delve deeper. Fifty years later, a team has confirmed the presence of QSL behavior in a new material with this structure, KYbSe2.
Published Novel measurement technique for fluid mixing phenomena using selective color imaging method



A novel measurement technique has been developed to visualize the fluid flow and distribution within two droplets levitated and coalesced in space using fluorescence-emitting particles. This technique enabled the estimation of fluid motion within each droplet, thereby revealing the internal flow caused by surface vibration when the droplet merging promotes fluid mixing.
Published Riddle of Kondo effect solved in ultimately thin wires



A research team has now directly measured the so-called Kondo effect, which governs the behavior of magnetic atoms surrounded by a sea of electrons: New observations with a scanning tunneling microscope reveal the effect in one-dimensional wires floating on graphene.
Published New laser setup probes metamaterial structures with ultrafast pulses



A new technique offers a safe, reliable, and high-throughput way to dynamically characterize microscale metamaterials. The method could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials.
Published Keep it secret: Cloud data storage security approach taps quantum physics



Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.
Published Tracking down quantum flickering of the vacuum



Absolutely empty -- that is how most of us envision the vacuum. Yet, in reality, it is filled with an energetic flickering: the quantum fluctuations. Experts are currently preparing a laser experiment intended to verify these vacuum fluctuations in a novel way, which could potentially provide clues to new laws in physics. A research team has developed a series of proposals designed to help conduct the experiment more effectively -- thus increasing the chances of success.
Published Photo-induced superconductivity on a chip



Researchers have shown that a previously demonstrated ability to turn on superconductivity with a laser beam can be integrated on a chip, opening up a route toward opto-electronic applications.
Published Solar-powered device produces clean water and clean fuel at the same time



A floating, solar-powered device that can turn contaminated water or seawater into clean hydrogen fuel and purified water, anywhere in the world, has been developed by researchers.
Published quantum mechanics: Unlocking the secrets of spin with high-harmonic probes



Deep within every piece of magnetic material, electrons dance to the invisible tune of quantum mechanics. Their spins, akin to tiny atomic tops, dictate the magnetic behavior of the material they inhabit. This microscopic ballet is the cornerstone of magnetic phenomena, and it's these spins that a team of researchers has learned to control with remarkable precision, potentially redefining the future of electronics and data storage.
Published Atomic dance gives rise to a magnet



Researchers turned a paramagnetic material into a magnet by manipulating electrons' spin via atomic motion.
Published Photonics team develops high-performance ultrafast lasers that fit on a fingertip



Scientists demonstrate a novel approach for creating high-performance ultrafast lasers on nanophotonic chips. The new advance will enable pocket-sized devices that can perform detailed GPS-free precision navigation, medical imaging, food safety inspection and more.
Published Chemists image basic blocks of synthetic polymers



Researchers have developed a new method to image polymerization catalysis reactions one monomer at a time.
Published 'Indoor solar' to power the Internet of Things



From Wi-Fi-connected home security systems to smart toilets, the so-called Internet of Things brings personalization and convenience to devices that help run homes. But with that comes tangled electrical cords or batteries that need to be replaced. Now, researchers have brought solar panel technology indoors to power smart devices. They show which photovoltaic (PV) systems work best under cool white LEDs, a common type of indoor lighting.
Published Physicists trap electrons in a 3D crystal



Physicists have trapped electrons in a pure crystal, marking the first achievement of an electronic flat band in a three-dimensional material. The results provide a new way for scientists to explore rare electronic states in 3D materials.
Published 'Hot' new form of microscopy examines materials using evanescent waves



A team of researchers has built a prototype microscope that does not rely on backscattered radiation, instead uses passive detection of thermally excited evanescent waves. They have examined dielectric materials with passive near-field spectroscopy to develop a detection model to further refine the technique, working to develop a new kind of microscopy for examining nanoscopic material surfaces.
Published Decarbonizing light-duty transportation in the United States: Study reveals strategies to achieve goal



Researchers found that meeting greenhouse gas emissions goals for light-duty vehicles, which are passenger vehicles such as cars and trucks, is possible, but not just by increasing electric vehicle sales.