Showing 20 articles starting at article 621

< Previous 20 articles        Next 20 articles >

Categories: Physics: Optics, Physics: Quantum Physics

Return to the site home page

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Sensing and controlling microscopic spin density in materials      (via sciencedaily.com) 

Researchers found a way to tune the spin density in diamond by applying an external laser or microwave beam. The finding could open new possibilities for advanced quantum devices.

Physics: Optics
Published

Butterfly-inspired films create vibrant colors while passively cooling objects      (via sciencedaily.com)     Original source 

New films inspired by butterfly wings circumvent the heating effect usually experienced by colored objects absorbing light on a hot day. The new films could be used on the outside of buildings, vehicles and equipment to reduce the energy needed for cooling while preserving vivid color properties.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum discovery: Materials can host D-wave effects with F-wave behaviors      (via sciencedaily.com) 

In a potential boon for quantum computing, physicists have shown that topologically protected quantum states can be entangled with other, highly manipulable quantum states in some electronic materials.

Physics: Quantum Physics
Published

Super Radar: Breakthrough radar research overcomes a nearly century-old trade-off between wavelength and distance resolution      (via sciencedaily.com) 

New interference radar functions improve the distance resolution between objects using radar waves. The results may have important ramifications in military, construction, archaeology, mineralogy and many other domains of radar applications. It addresses a nine decades-old problem that requires scientists and engineers to sacrifice detail and resolution for observation distance -- underwater, underground, and in the air.

Geoscience: Earthquakes Geoscience: Geology Physics: Optics
Published

Fiber optic cables detect and characterize earthquakes      (via sciencedaily.com)     Original source 

The same fiber optic networks that provide internet can simultaneously act as earthquake sensors, as demonstrated in a new study.

Physics: Quantum Physics
Published

Calculations reveal high-resolution view of quarks inside protons      (via sciencedaily.com) 

A collaboration of nuclear theorists has used supercomputers to predict the spatial distributions of charges, momentum, and other properties of 'up' and 'down' quarks within protons. The calculations show that the up quark is more symmetrically distributed and spread over a smaller distance than the down quark.

Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Absence of universal topological signatures in high harmonic generation      (via sciencedaily.com) 

Theoreticians report that they found no evidence of any universal topological signatures after performing the first ab initio investigation of high harmonic generation from topological insulators.

Energy: Alternative Fuels Geoscience: Geology Geoscience: Geomagnetic Storms Offbeat: Earth and Climate Offbeat: Space Physics: Optics Space: The Solar System
Published

Sun 'umbrella' tethered to asteroid might help mitigate climate change      (via sciencedaily.com)     Original source 

Earth is rapidly warming and scientists are developing a variety of approaches to reduce the effects of climate change. An astronomer has proposed a novel approach -- a solar shield to reduce the amount of sunlight hitting Earth, combined with a tethered, captured asteroid as a counterweight. Engineering studies using this approach could start now to create a workable design that could mitigate climate change within decades.

Energy: Nuclear Physics: Quantum Computing Physics: Quantum Physics
Published

Nuclear spin's impact on biological processes uncovered      (via sciencedaily.com) 

Researchers have discovered that nuclear spin influences biological processes, challenging long-held beliefs. They found that certain isotopes behave differently in chiral environments, affecting oxygen dynamics and transport. This breakthrough could advance biotechnology, quantum biology, and NMR technology, with potential applications in isotope separation and medical imaging.

Computer Science: Quantum Computers Energy: Technology Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create novel approach to control energy waves in 4D      (via sciencedaily.com) 

Everyday life involves the three dimensions or 3D -- along an X, Y and Z axis, or up and down, left and right, and forward and back. But, in recent years scientists have explored a 'fourth dimension' (4D), or synthetic dimension, as an extension of our current physical reality.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

When electrons slowly vanish during cooling      (via sciencedaily.com) 

Many substances change their properties when they are cooled below a certain critical temperature. Such a phase transition occurs, for example, when water freezes. However, in certain metals there are phase transitions that do not exist in the macrocosm. They arise because of the special laws of quantum mechanics that apply in the realm of nature's smallest building blocks. It is thought that the concept of electrons as carriers of quantized electric charge no longer applies near these exotic phase transitions. Researchers have now found a way to prove this directly. Their findings allow new insights into the exotic world of quantum physics.

Physics: Optics Physics: Quantum Physics
Published

New method improves proton acceleration with high power laser      (via sciencedaily.com) 

Bringing protons up to speed with strong laser pulses -- this still young concept promises many advantages over conventional accelerators. For instance, it seems possible to build much more compact facilities. Prototypes to date, however, in which laser pulses are fired at ultra-thin metal foils, show weaknesses -- especially in the frequency with which they can accelerate protons. An international working group has tested a new technique: In this approach, frozen hydrogen acts as a 'target' for the laser pulses.

Physics: Optics Physics: Quantum Computing
Published

Novel Raman technique breaks through 50 years of frustration      (via sciencedaily.com) 

Researchers have developed a new technique that vastly improves readings of protein-to-ligand interactions through Raman spectroscopy.

Engineering: Biometric Physics: Optics
Published

Engineering team uses diamond microparticles to create high security anti-counterfeit labels      (via sciencedaily.com)     Original source 

Researchers have developed a pioneering technological solution that counterfeiters have no response to.

Physics: Quantum Computing Physics: Quantum Physics
Published

How atomic nuclei vibrate      (via sciencedaily.com) 

Using ultra-high-precision laser spectroscopy on a simple molecule, a group of physicists has measured the wave-like vibration of atomic nuclei with an unprecedented level of precision. The physicists report that they can thus confirm the wave-like movement of nuclear material more precisely that ever before and that they have found no evidence of any deviation from the established force between atomic nuclei.

Engineering: Graphene Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists caught Hofstadter's butterfly in one of the most ancient materials on Earth      (via sciencedaily.com) 

Researchers have revisited one of the most ancient materials on Earth -- graphite, and discovered new physics that has eluded the field for decades.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of quantum bit in semiconductor nanostructures      (via sciencedaily.com) 

Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.

Energy: Technology Physics: Quantum Computing Physics: Quantum Physics
Published

'Quantum avalanche' explains how nonconductors turn into conductors      (via sciencedaily.com)     Original source 

The study takes a new approach to answer a long-standing mystery about insulator-to-metal transitions.

Biology: Microbiology Engineering: Nanotechnology Physics: Quantum Computing Physics: Quantum Physics
Published

Detection of bacteria and viruses with fluorescent nanotubes      (via sciencedaily.com) 

The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.