Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Environmental: Water, Physics: Optics
Published Plasma oscillations propel breakthroughs in fusion energy



Researchers have discovered a new class of plasma oscillations -- the back-and-forth, wave-like movement of electrons and ions. The research paves the way for improved particle accelerators and commercial fusion energy.
Published Researchers prove fundamental limits of electromagnetic energy absorption



Electrical engineers have determined the theoretical fundamental limit for how much electromagnetic energy a transparent material with a given thickness can absorb. The finding will help engineers optimize devices designed to block certain frequencies of radiation while allowing others to pass through, for applications such as stealth or wireless communications.
Published Surprising insights about debris flows on Mars



The period that liquid water was present on the surface of Mars may have been shorter than previously thought. Channel landforms called gullies, previously thought to be formed exclusively by liquid water, can also be formed by the action of evaporating CO2 ice, according to a new study.
Published Perovskite solar cells: Vacuum process may offer a short track to commercialization



Which process is best suited for mass production of perovskite solar cells? While solvent-based manufacturing processes are used in laboratories around the world, vacuum vapor-phase deposition processes are still the standard for the production of thin films for photovoltaics or organic light-emitting diodes. A new study that reveals major differences in the scientific discussion of these production processes.
Published How to upcycle low-energy light



To combine two low-energy photons into one high-energy photon efficiently, the energy must be able to hop freely, but not too quickly, between randomly oriented molecules of a solid. The discovery provides a much-needed design guideline for developing materials for more efficient PV cells, displays, or even anti-cancer therapies.
Published Unique way to track carbon emissions in bodies of water



Carbon dioxide emissions are not typically associated with water ways, like streams and rivers, but emerging research shows that water bodies play an important role in storing and releasing carbon dioxide. As many states look for cost-effective ways to mitigate climate change, scientists looked at a way to optimize CO2 sensors to better measure carbon dioxide emissions in lotic, or moving, bodies of water offering a new tool that can help provide valuable information for everything from land use to climate action plans.
Published Sulfur and the origin of life



A new study shines a spotlight on sulfur, a chemical element that, while all familiar, has proved surprisingly resistant to scientific efforts in probing its role in the origin of life.
Published Asian aerosols' impact on Atlantic Meridional Overturning Circulation



A new study identifies the role aerosols over Asia is having on the AMOC, a complex system of currents in the Atlantic Ocean.
Published Water droplet spun by sound screens for colon cancer



Mechanical engineers have devised a diagnostic platform that uses sound waves to spin an individual drop of water up to 6000 revolutions per minute. These speeds separate tiny biological particles within samples placed in a very light disc sitting on top of the spinning drop. The technique could allow new point-of-care applications ranging from precision bioassays to cancer diagnosis. The technique requires less time and sample volume while inflicting less damage to delicate exosomes.
Published New high-speed microscale 3D printing technique



A new process for microscale 3D printing creates particles of nearly any shape for applications in medicine, manufacturing, research and more -- at the pace of up to 1 million particles a day.
Published With discovery of roundworms, Great Salt Lake's imperiled ecosystem gets more interesting



Biologists announce the discovery of numerous species of roundworm in the highly saline waters of Great Salt Lake, the vast terminal lake in northwestern Utah that supports millions of migratory birds. Previously, brine shrimp and brine flies were the only known multicellular animals living in the water column. The scientists found nematodes, belonging to a family known for inhabiting extreme environments, in the lake's microbialites, reef-like structures covering about a fifth of the lakebed.
Published Drought, soil desiccation cracking, and carbon dioxide emissions: an overlooked feedback loop exacerbating climate change



Soil stores 80 percent of carbon on earth, yet with increasing cycles of drought, that crucial reservoir is cracking and breaking down, releasing even more greenhouse gases creating an amplified feedback loop that could accelerate climate change.
Published 'Find pearls in the soil' unveiling the magic of hydrogen production from municipal sewage



Scientists have developed a catalyst for the urea oxidation reaction, enhancing hydrogen generation efficiency.
Published Satellites for quantum communications



Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.
Published New high-performance solar cell material



A new study reports the discovery of an entirely new stable, earth-abundant, high-performance material for solar absorbers -- the central part of a solar cell that turns light into electricity. While identifying new solar materials is typically very time-consuming, the researchers used a unique high-throughput computational screening method to quickly evaluate around 40,000 candidate materials.
Published Grounding zone discovery explains accelerated melting under Greenland's glaciers



Researchers have conducted the first large-scale observation and modeling study of northwest Greenland's Petermann Glacier. Their findings reveal the intrusion of warm ocean water beneath the ice as the culprit in the accelerated melting it has experienced since the turn of the century, and their computer predictions indicate that potential sea level rise will be much worse than previously estimated.
Published Have metalenses expanded their reach into the ultraviolet region?



A team achieves successful mass production of metalenses designed for application in the ultraviolet region.
Published Mars attracts: How Earth's interactions with the red planet drive deep-sea circulation



Scientists have used the geological record of the deep sea to discover a connection between the orbits of Earth and Mars, past global warming patterns and the speeding up of deep ocean circulation. The patterns they discover suggest that warming seas could produce deep whirpools in ocean currents.
Published New traffic signal would improve travel time for both pedestrians and vehicles



Adding a fourth light to traffic signals -- in addition to red, green and yellow -- would shorten wait times at street corners for pedestrians, as well as improve traffic flow for both autonomous vehicles and human drivers. And the more autonomous vehicles there are in the traffic network, the shorter the wait times for everyone.
Published Powerful new tool ushers in new era of quantum materials research



Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.