Showing 20 articles starting at article 661

< Previous 20 articles        Next 20 articles >

Categories: Environmental: Water, Physics: Optics

Return to the site home page

Biology: Biochemistry Biology: Marine Biology: Zoology Ecology: Animals Ecology: Sea Life Environmental: Water Geoscience: Geography
Published

Number of shark bites consistent with recent trends, with small spike in fatalities      (via sciencedaily.com)     Original source 

There was an increase in the number of unprovoked shark attacks worldwide and an uptick in fatalities in 2023 compared to the previous year. A scientific database of global shark attacks, confirmed 69 unprovoked bites in 2023. Although this is higher than the most recent five-year average of 63 attacks, the data remain consistent with long-term trends.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Unveiling the generation principles of charged particles 'trion' in 2D semiconductor      (via sciencedaily.com)     Original source 

Researchers pioneer dynamic manipulation and the generation principles of trion at the nanoscale using tip-enhanced cavity-spectroscopy.

Chemistry: General Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Ammonia attracts the shipping industry, but researchers warn of its risks      (via sciencedaily.com)     Original source 

Switching to ammonia as a marine fuel, with the goal of decarbonization, can instead create entirely new problems. This is shown in a study where researchers carried out life cycle analyses for batteries and for three electrofuels including ammonia. Eutrophication and acidification are some of the environmental problems that can be traced to the use of ammonia -- as well as emissions of laughing gas, which is a very potent greenhouse gas.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology Environmental: Water
Published

Ultra-sensitive lead detector could significantly improve water quality monitoring      (via sciencedaily.com)     Original source 

Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.

Energy: Nuclear Offbeat: General Physics: General Physics: Optics
Published

Scientists create effective 'spark plug' for direct-drive inertial confinement fusion experiments      (via sciencedaily.com)     Original source 

Scientists completed several successful attempts to fire 28 kilojoules of laser energy at small capsules filled with deuterium and tritium fuel, causing the capsules to implode and produce a plasma hot enough to initiate fusion reactions between the fuel nuclei. These results demonstrate an effective 'spark plug' for direct-drive methods of inertial confinement fusion.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Biometric Engineering: Nanotechnology Physics: General Physics: Optics
Published

A sleeker facial recognition technology tested on Michelangelo's David      (via sciencedaily.com)     Original source 

Many people are familiar with facial recognition systems that unlock smartphones and game systems or allow access to our bank accounts online. But the current technology can require boxy projectors and lenses. Now, researchers report on a sleeker 3D surface imaging system with flatter, simplified optics. In proof-of-concept demonstrations, the new system recognized the face of Michelangelo's David just as well as an existing smartphone system.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A physical qubit with built-in error correction      (via sciencedaily.com)     Original source 

Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.

Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Paleontology: Climate
Published

Permafrost alone holds back Arctic rivers -- and a lot of carbon      (via sciencedaily.com)     Original source 

A new study provides the first evidence that the Arctic's frozen soil is the dominant force shaping Earth's northernmost rivers, confining them to smaller areas and shallower valleys than rivers to the south. But as climate change weakens Arctic permafrost, the researchers calculate that every 1 degree Celsius of global warming could release as much carbon as 35 million cars emit in a year as polar waterways expand and churn up the thawing soil.

Chemistry: Biochemistry Energy: Technology Physics: Acoustics and Ultrasound Physics: Optics
Published

Photonics-based wireless link breaks speed records for data transmission      (via sciencedaily.com)     Original source 

Researchers demonstrated a 300 GHz-band wireless link that was able to transmit data over a single channel at a rate of 240 gigabits per second. The wireless communication system employs signal generators based on lasers that have ultra-low phase noise in the sub-terahertz band. This rate is the highest so far reported at these frequencies and is a substantial step forward in 300 GHz-band communications for 6G networks.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Short X-ray pulses reveal the source of light-induced ferroelectricity in SrTiO3      (via sciencedaily.com)     Original source 

Researchers have gained new insights into the development of the light-induced ferroelectric state in SrTiO3. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain why the dipolar structure is more ordered than in equilibrium and why the laser pulses induce a ferroelectric state in the material.

Biology: Biochemistry Biology: General Biology: Microbiology Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Microbial research unravels a global nitrogen mystery      (via sciencedaily.com)     Original source 

A research findings show that different AOM lineages employ different regulatory strategies for ammonia or urea utilization, thereby minimizing direct competition with one another and allowing for coexistence.

Chemistry: Biochemistry Chemistry: General Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Engineers unmask nanoplastics in oceans for the first time, revealing their true shapes and chemistry      (via sciencedaily.com)     Original source 

Millions of tons of plastic waste enter the oceans each year. The sun's ultraviolet light and ocean turbulence break down these plastics into invisible nanoparticles that threaten marine ecosystems. In a new study, engineers have presented clear images of nanoplastics in ocean water off the coasts of China, South Korea and the United States, and in the Gulf of Mexico. These tiny plastic particles, which originated from such consumer products as water bottles, food packaging and clothing, were found to have surprising diversity in shape and chemical composition.

Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Trees struggle to 'breathe' as climate warms      (via sciencedaily.com)     Original source 

Trees are struggling to sequester heat-trapping carbon dioxide (CO2) in warmer, drier climates, meaning that they may no longer serve as a solution for offsetting humanity's carbon footprint as the planet continues to warm, according to a new study.

Physics: Optics
Published

Capturing ultrafast light-induced phenomena on the nanoscale: development of a novel time-resolved atomic force microscopy technique      (via sciencedaily.com)     Original source 

Researchers have successfully developed a new time-resolved atomic force microscopy (AFM) technique, integrating AFM with a unique laser technology. This method enables the measurement of ultrafast photoexcitation phenomena in both conductors and insulators, observed through changes in the forces between the sample and the AFM probe tip after an extremely short time irradiation of laser light. This advancement promises substantial contributions to the creation of new scientific and technological principles and fields.

Biology: Biochemistry Biology: General Biology: Microbiology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

Fungal-rich soil may improve green roofs      (via sciencedaily.com)     Original source 

Green roofs have become increasingly popular thanks to their benefits related to climate adaptation, mitigation, and urban biodiversity management. But, in the U.S., green roofs are typically planted with non-native plants in sterile soils, and their effectiveness declines over time. A new study finds that managing green roof soil microbes boosts healthy urban soil development, which is a methodology that could be applied to support climate resilience in cities.

Physics: General Physics: Optics
Published

Researchers discover new ways to excite spin waves with extreme infrared light      (via sciencedaily.com)     Original source 

Researchers have developed a pioneering method to precisely manipulate ultrafast spin waves in antiferromagnetic materials using tailored light pulses.

Biology: Biochemistry Biology: Marine Ecology: Invasive Species Ecology: Sea Life Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Geography Geoscience: Oceanography
Published

As sea otters recolonize California estuary, they restore its degraded geology      (via sciencedaily.com)     Original source 

As sea otters recolonize a California estuary, they are restoring its degraded geology by keeping populations of overgrazing marsh crabs in check, a new study shows. The crabs' appetite for plant roots, and their tunneling behavior had caused many of the estuary's marshes and creekbanks to erode and collapse in the otters' absence. Today, erosion has slowed by up to 90% in areas with large otter populations and marshes and streambeds are restabilizing.

Engineering: Nanotechnology Physics: Optics
Published

New breakthroughs for unlocking the potential of plasmonics      (via sciencedaily.com)     Original source 

Plasmonics are unique light-matter interactions in the nanoscale regime. Now, a team of researchers has highlighted advances in shadow growth techniques for plasmonic materials, which have the potential to give rise to nanoparticles with diverse shapes and properties. They also introduce a method for large-scale production of nano-rotamers of magnesium with programmable polarization behavior, opening avenues for novel research applications.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Ecology: Endangered Species Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Using CRISPR technology, researchers succeed in growing tomatoes that consume less water without compromising yield      (via sciencedaily.com)     Original source 

Scientists have succeeded in cultivating and characterizing tomato varieties with higher water use efficiency without compromising yield. The researchers, employing CRISPR genetic editing technology, were able to grow tomatoes that consume less water while preserving yield, quality, and taste.

Chemistry: Biochemistry Physics: Optics
Published

A faster, more efficient imaging system for nanoparticles      (via sciencedaily.com)     Original source 

Scientists have developed a new system for imaging nanoparticles. It consists of a high-precision, short-wave infrared imaging technique capable of capturing the photoluminescence lifetimes of rare-earth doped nanoparticles in the micro- to millisecond range.