Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geomagnetic Storms, Physics: Optics
Published Unleashing a new era of color tunable nano-devices -- smallest ever light source with switchable colors formed


New research has achieved a significant breakthrough in color switching for nanocrystals, unlocking exciting possibilities for a simple, energy efficient display design and for tunable light sources needed in numerous technologies. The discovery also has potential applications in sensitive sensors for various substances, including biological and neuroscience uses, as well as advancements in quantum communication technologies. This nanomaterial breakthrough holds the promise of inspiring exciting innovations in the future.
Published Butterfly-inspired films create vibrant colors while passively cooling objects



New films inspired by butterfly wings circumvent the heating effect usually experienced by colored objects absorbing light on a hot day. The new films could be used on the outside of buildings, vehicles and equipment to reduce the energy needed for cooling while preserving vivid color properties.
Published Fiber optic cables detect and characterize earthquakes



The same fiber optic networks that provide internet can simultaneously act as earthquake sensors, as demonstrated in a new study.
Published Thermal imaging innovation allows AI to see through pitch darkness like broad daylight


Engineers have developed HADAR, or heat-assisted detection and ranging.
Published Absence of universal topological signatures in high harmonic generation


Theoreticians report that they found no evidence of any universal topological signatures after performing the first ab initio investigation of high harmonic generation from topological insulators.
Published Sun 'umbrella' tethered to asteroid might help mitigate climate change



Earth is rapidly warming and scientists are developing a variety of approaches to reduce the effects of climate change. An astronomer has proposed a novel approach -- a solar shield to reduce the amount of sunlight hitting Earth, combined with a tethered, captured asteroid as a counterweight. Engineering studies using this approach could start now to create a workable design that could mitigate climate change within decades.
Published New method improves proton acceleration with high power laser


Bringing protons up to speed with strong laser pulses -- this still young concept promises many advantages over conventional accelerators. For instance, it seems possible to build much more compact facilities. Prototypes to date, however, in which laser pulses are fired at ultra-thin metal foils, show weaknesses -- especially in the frequency with which they can accelerate protons. An international working group has tested a new technique: In this approach, frozen hydrogen acts as a 'target' for the laser pulses.
Published Novel Raman technique breaks through 50 years of frustration


Researchers have developed a new technique that vastly improves readings of protein-to-ligand interactions through Raman spectroscopy.
Published Engineering team uses diamond microparticles to create high security anti-counterfeit labels



Researchers have developed a pioneering technological solution that counterfeiters have no response to.
Published Nanophotonics: Coupling light and matter



Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).
Published New microcomb device advances photonic technology



Researchers have outlined a new high-speed tunable microcomb that could help propel advances in wireless communication, imaging, atomic clocks, and more.
Published Groundwork for future ultra-precise timing links to geosynchronous satellites



Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.
Published Terahertz-to-visible light conversion for future telecommunications



A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.
Published Nanomaterials: 3D printing of glass without sintering



A new process enables printing of nanometer-scale quartz glass structures directly onto semiconductor chips. A hybrid organic-inorganic polymer resin is used as feedstock material for 3D printing of silicon dioxide. Since the process works without sintering, the required temperatures are significantly lower. Simultaneously, increased resolution enables visible-light nanophotonics.
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published New material transforms light, creating new possibilities for sensors



A new class of materials that can absorb low energy light and transform it into higher energy light might lead to more efficient solar panels, more accurate medical imaging and better night vision goggles.
Published Researchers demonstrate noise-free communication with structured light



Scientists used a new invariant property of vectorial light to encode information. This quantity, which the team call 'vectorness', scales from 0 to 1 and remains unchanged when passing through a noisy channel.
Published Mirror, mirror on the wall... Now we know there are chiral phonons for sure



New findings settle the dispute: phonons can be chiral. This fundamental concept, discovered using circular X-ray light, sees phonons twisting like a corkscrew through quartz.
Published Researchers demonstrate secure information transfer using spatial correlations in quantum entangled beams of light



Researchers have demonstrated the principle of using spatial correlations in quantum entangled beams of light to encode information and enable its secure transmission.
Published Buckle up! A new class of materials is here



Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.