Showing 20 articles starting at article 461

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Geomagnetic Storms, Physics: Optics

Return to the site home page

Engineering: Nanotechnology Physics: Optics Physics: Quantum Computing
Published

Unleashing a new era of color tunable nano-devices -- smallest ever light source with switchable colors formed      (via sciencedaily.com) 

New research has achieved a significant breakthrough in color switching for nanocrystals, unlocking exciting possibilities for a simple, energy efficient display design and for tunable light sources needed in numerous technologies. The discovery also has potential applications in sensitive sensors for various substances, including biological and neuroscience uses, as well as advancements in quantum communication technologies. This nanomaterial breakthrough holds the promise of inspiring exciting innovations in the future.

Physics: Optics
Published

Butterfly-inspired films create vibrant colors while passively cooling objects      (via sciencedaily.com)     Original source 

New films inspired by butterfly wings circumvent the heating effect usually experienced by colored objects absorbing light on a hot day. The new films could be used on the outside of buildings, vehicles and equipment to reduce the energy needed for cooling while preserving vivid color properties.

Geoscience: Earthquakes Geoscience: Geology Physics: Optics
Published

Fiber optic cables detect and characterize earthquakes      (via sciencedaily.com)     Original source 

The same fiber optic networks that provide internet can simultaneously act as earthquake sensors, as demonstrated in a new study.

Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Absence of universal topological signatures in high harmonic generation      (via sciencedaily.com) 

Theoreticians report that they found no evidence of any universal topological signatures after performing the first ab initio investigation of high harmonic generation from topological insulators.

Energy: Alternative Fuels Geoscience: Geology Geoscience: Geomagnetic Storms Offbeat: Earth and Climate Offbeat: Space Physics: Optics Space: The Solar System
Published

Sun 'umbrella' tethered to asteroid might help mitigate climate change      (via sciencedaily.com)     Original source 

Earth is rapidly warming and scientists are developing a variety of approaches to reduce the effects of climate change. An astronomer has proposed a novel approach -- a solar shield to reduce the amount of sunlight hitting Earth, combined with a tethered, captured asteroid as a counterweight. Engineering studies using this approach could start now to create a workable design that could mitigate climate change within decades.

Physics: Optics Physics: Quantum Physics
Published

New method improves proton acceleration with high power laser      (via sciencedaily.com) 

Bringing protons up to speed with strong laser pulses -- this still young concept promises many advantages over conventional accelerators. For instance, it seems possible to build much more compact facilities. Prototypes to date, however, in which laser pulses are fired at ultra-thin metal foils, show weaknesses -- especially in the frequency with which they can accelerate protons. An international working group has tested a new technique: In this approach, frozen hydrogen acts as a 'target' for the laser pulses.

Physics: Optics Physics: Quantum Computing
Published

Novel Raman technique breaks through 50 years of frustration      (via sciencedaily.com) 

Researchers have developed a new technique that vastly improves readings of protein-to-ligand interactions through Raman spectroscopy.

Engineering: Biometric Physics: Optics
Published

Engineering team uses diamond microparticles to create high security anti-counterfeit labels      (via sciencedaily.com)     Original source 

Researchers have developed a pioneering technological solution that counterfeiters have no response to.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophotonics: Coupling light and matter      (via sciencedaily.com)     Original source 

Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).

Computer Science: General Energy: Technology Physics: Optics
Published

New microcomb device advances photonic technology      (via sciencedaily.com)     Original source 

Researchers have outlined a new high-speed tunable microcomb that could help propel advances in wireless communication, imaging, atomic clocks, and more.

Physics: General Physics: Optics Physics: Quantum Physics Space: Exploration Space: General
Published

Groundwork for future ultra-precise timing links to geosynchronous satellites      (via sciencedaily.com)     Original source 

Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.

Engineering: Graphene Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Terahertz-to-visible light conversion for future telecommunications      (via sciencedaily.com)     Original source 

A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Nanomaterials: 3D printing of glass without sintering      (via sciencedaily.com)     Original source 

A new process enables printing of nanometer-scale quartz glass structures directly onto semiconductor chips. A hybrid organic-inorganic polymer resin is used as feedstock material for 3D printing of silicon dioxide. Since the process works without sintering, the required temperatures are significantly lower. Simultaneously, increased resolution enables visible-light nanophotonics.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Physics: Optics
Published

New material transforms light, creating new possibilities for sensors      (via sciencedaily.com)     Original source 

A new class of materials that can absorb low energy light and transform it into higher energy light might lead to more efficient solar panels, more accurate medical imaging and better night vision goggles.

Physics: Optics
Published

Researchers demonstrate noise-free communication with structured light      (via sciencedaily.com)     Original source 

Scientists used a new invariant property of vectorial light to encode information. This quantity, which the team call 'vectorness', scales from 0 to 1 and remains unchanged when passing through a noisy channel.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Mirror, mirror on the wall... Now we know there are chiral phonons for sure      (via sciencedaily.com)     Original source 

New findings settle the dispute: phonons can be chiral. This fundamental concept, discovered using circular X-ray light, sees phonons twisting like a corkscrew through quartz.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: General Physics: Optics
Published

Buckle up! A new class of materials is here      (via sciencedaily.com)     Original source 

Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.