Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Earthquakes, Physics: Optics
Published Researchers demonstrate the first chip-based 3D printer



Researchers have demonstrated the first chip-based 3D printer, a tiny device that emits reconfigurable beams of visible light into a well of resin that rapidly cures into a solid shape. The advance could enable a 3D printer small enough to fit in the palm of a person's hand.
Published Miniaturizing a laser on a photonic chip



Scientists have successfully miniaturized a powerful erbium-based biber laser on a silicon-nitride photonic chip. Since typical erbium-based fiber lasers are large and difficult to scale down, the breakthrough promises major advances in optical communications and sensing technologies.
Published 'Quantum optical antennas' provide more powerful measurements on the atomic level



A multi-institutional team has created atomic optical antennas in solids. The team used germanium vacancy centers in diamonds to create an optical energy enhancement of six orders of magnitude, a regime challenging to reach with conventional atomic antenna structures.
Published Cascadia Subduction Zone, one of Earth's top hazards, comes into sharper focus



A new study has produced the first comprehensive survey of the many complex structures beneath the seafloor in the Cascadia Subduction Zone, off British Columbia, Washington, Oregon and California. It is providing scientists with key insights into how future disasters may unfold.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published With programmable pixels, novel sensor improves imaging of neural activity



New camera chip design allows for optimizing each pixel's timing to maximize signal to noise ratio when tracking real-time visual indicator of neural voltage.
Published Crystal engineering modifies 2D metal halide perovskites into 1D nanowires



Engineers have created a patent-pending method that creates layered perovskite nanowires with exceptionally well-defined and flexible cavities that exhibit a wide range of unusual optical properties beyond conventional perovskites.
Published Breaking ground: Could geometry offer a new explanation for why earthquakes happen?



Researchers are adding a new wrinkle to a long-held belief about what causes earthquakes in the first place.
Published Observing ultrafast photoinduced dynamics in a halogen-bonded supramolecular system



Researchers uncover how the halogen bond can be exploited to direct sequential dynamics in the multi-functional crystals, offering crucial insights for developing ultrafast-response times for multilevel optical storage.
Published Shining a light on molecules: L-shaped metamaterials can control light direction



Polarized light waves spin clockwise or counterclockwise as they travel, with one direction behaving differently than the other as it interacts with molecules. This directionality, called chirality or handedness, could provide a way to identify and sort specific molecules for use in biomedicine applications, but researchers have had limited control over the direction of the waves -- until now.
Published Traffic speeds decrease when bike lane is present



Researchers conducting a study at a high-traffic intersection in a Jersey Shore town have found that the installation of a bike lane along the road approaching the convergence reduced driving speeds.
Published Development of revolutionary color-tunable photonic devices



Team develops a flexible and stretchable device capable of omnidirectional color wavelength control.
Published Scientists develop most sensitive way to observe single molecules



A technical achievement marks a significant advance in the burgeoning field of observing individual molecules without the aid of fluorescent labels. While these labels are useful in many applications, they alter molecules in ways that can obscure how they naturally interact with one another. The new label-free method makes the molecules so easy to detect, it is almost as if they had labels.
Published Innovative bird-eye-inspired camera developed for enhanced object detection



The eyes of raptors such as eagles can accurately perceive prey from kilometers away. Is it possible to model the camera technology after the bird's eyes? Researchers developed a new type of camera, which was inspired by the structures and functions of bird's eyes.
Published Safeguarding urban infrastructure from subsidence and liquefaction risks



During an earthquake, soil can weaken through subsidence and liquefaction. These processes can cause buildings to collapse as the soil becomes unable to support their weight. Researchers have now developed a model that predicts soil-bearing strength and thickness to identify stable construction sites and reduce structural risks. Additionally, the model can also predict other soil conditions in real-time and function as an early-warning system to identify potential hazards.
Published The thinnest lens on Earth, enabled by excitons



Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.
Published New anti-counterfeit technique packs two light-reactive images into one material



Growing concern about data theft and counterfeiting has inspired increasingly sophisticated security technologies, like hologram seals, that can help verify the authenticity of currency, passports and other important documents. However, as security technologies evolve, so do the techniques criminals use to get past them. To stay one step ahead of these bad actors, researchers report that they have developed a new photopatterning technique that creates two light-reactive images on one material.
Published Electrochromic films -- like sunglasses for your windows?



Advances in electrochromic coatings may bring us closer to environmentally friendly ways to keep inside spaces cool. Like eyeglasses that darken to provide sun protection, the optical properties of these transparent films can be tuned with electricity to block out solar heat and light. Now, researchers report demonstrating a new electrochromic film design based on metal-organic frameworks (MOFs) that quickly and reliably switch from transparent to glare-diminishing green to thermal-insulating red.
Published New technique offers more precise maps of the Moon's surface



A new study may help redefine how scientists map the surface of the Moon, making the process more streamlined and precise than ever before.
Published Study is step towards energy-efficient quantum computing in magnets



Researchers have managed to generate propagating spin waves at the nanoscale and discovered a novel pathway to modulate and amplify them. Their discovery could pave the way for the development of dissipation free quantum information technologies. As the spin waves do not involve electric currents these chips will be free from associated losses of energy. The rapidly growing popularity of artificial intelligence comes with an increasing desire for fast and energy efficient computing devices and calls for novel ways to store and process information. The electric currents in conventional devices suffer from losses of energy and subsequent heating of the environment.