Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: Optics
Published Mercury rising: Study sheds new light on ancient volcanoes' environmental impact



Massive volcanic events in Earth's history that released large amounts of carbon into the atmosphere frequently correlate with periods of severe environmental change and mass extinctions. A new method to estimate how much and how rapidly carbon was released by the volcanoes could improve our understanding of the climate response, according to an international team.
Published Microbial viruses act as secret drivers of climate change



Scientists have discovered that viruses that infect microbes contribute to climate change by playing a key role in cycling methane, a potent greenhouse gas, through the environment.
Published Lake ecosystems: Nitrogen has been underestimated



An ecological imbalance in a lake can usually be attributed to increased nutrient inputs. The result: increased phytoplankton growth, oxygen deficiency, toxic cyanobacterial blooms and fish kills. Until now, controls in lake management have focused primarily on phosphorus inputs to counteract this effect. Now, this dogma is shaken by a study showing that nitrogen is also a critical driver for phytoplankton growth in lakes worldwide.
Published Researchers improve the stability of perovskite solar cells



Perovskite solar cells are considered the strongest contender to replace silicon solar cells. While they achieve high power conversion energy, they also suffer from lead leakage and perovskite degradation due to moisture. Now scientists leverage the technique of interfacial passivation, where lead ions are bound by crown ether B18C6, obtaining 21.7% power conversion energy. The crown ether also resists degradation due to moisture for 300 hours at room temperature and 85% humidity.
Published Scientists reveal how light behaves in formless solids



For a long time, it was thought that amorphous solids do not selectively absorb light because of their disordered atomic structure. A new study disproves this theory and shows that amorphous solids actually exhibit dichroism, meaning that they selectively absorb light of different polarizations.
Published A bright idea for recycling rare-earth phosphors from used fluorescent bulbs



Recycling facilities collect glass and mercury from thrown away fluorescent bulbs, but discarded lighting could also supply rare-earth metals for reuse. The 17 metals referred to as rare earths aren't all widely available and aren't easily extracted with existing recycling methods. Now, researchers have found a simpler way to collect slightly magnetic particles that contain rare-earth metals from spent fluorescent bulbs.
Published How first cells could have formed on Earth



New phospholipid discovery brings researchers closer to understanding how primordial cells emerged during origin of life.
Published Study reveals accelerated soil priming under climate warming



A new study highlights a crucial biosphere feedback mechanism and its effects on releasing soil carbon into the atmosphere.
Published Chemistry in the ground affects how many offspring wild animals have



Chemistry in the ground affect how many kids wild animals have Areas with more copper and selenium in the ground lead to higher reproductive success in wild musk oxen in Greenland.
Published Researchers develop novel method to photosynthesize hydrogen peroxide using water and air



Researchers have developed a microporous covalent organic framework with dense donor-acceptor lattices and engineered linkages for the efficient and clean production of hydrogen peroxide through the photosynthesis process with water and air.
Published Light stimulates a new twist for synthetic chemistry



Molecules that are induced by light to rotate bulky groups around central bonds could be developed into photo-activated bioactive systems, molecular switches, and more.
Published Low-Temperature Plasma used to remove E. coli from hydroponically grown crops



In a new study, a team sterilized a hydroponic nutrient solution using low-temperature plasma generated from electricity and the oxygen in the atmosphere. This new sterilization technique may allow farmers to grow crops without the use of chemical pesticides, representing an important advance in agricultural technology for sustainable crop production.
Published Diamonds are a chip's best friend



New technologies aim to produce high-purity synthetic crystals that become excellent semiconductors when doped with impurities as electron donors or acceptors of other elements. Researchers have now determined the magnitude of the spin-orbit interaction in acceptor-bound excitons in a semiconductor. They broke through the energy resolution limit of conventional luminescence measurements by directly observing the fine structure of bound excitons in boron-doped blue diamond, using optical absorption.
Published Trapping and excitation of the simplest molecule



The simplest possible molecule H2+ was one of the very first molecules to form in the cosmos. This makes it significant for astrophysics, but also an important object of research for fundamental physics. It is difficult to study in experiments. However, a team of physicists has now succeeded in measuring the vibrations of the molecule with a laser.
Published Visual prosthesis simulator offers a glimpse into the future



Researchers have developed a simulator that enables artificial visual observations for research into the visual prosthesis. This open source tool is available to researchers and offers those who are interested insight into the future application.
Published Scientists propose new method for tracking elusive origins of CO2 emissions from streams



A team of researchers that specializes in accounting for the carbon dioxide release by streams, rivers and lakes recently demonstrated that the chemical process known as 'carbonate buffering' can account for the majority of emissions in highly alkaline waters. Furthermore, carbonate buffering distorts the most commonly used method of tracking the origins of CO2 in streams. The research proposes a better method for tracking the origin of riverine CO2 emissions.
Published Movies of ultrafast electronic circuitry in space and time



Researchers have successfully filmed the operations of extremely fast electronic circuitry in an electron microscope at a bandwidth of tens of terahertz.
Published Laser-focused look at spinning electrons shatters world record for precision



Nuclear physicists have shattered a nearly 30-year-old record for precision in electron beam polarimetry. The groundbreaking result sets the stage for high-profile experiments that could open the door to new physics discoveries.
Published Black carbon sensor could fill massive monitoring gaps



Black carbon is up to 25 times more hazardous to human health than other airborne particles of a similar size. Standard sensors are expensive and burdensome, resulting in sparse coverage in regions infamous for poor air quality, such as the greater Salt Lake City area. A University of Utah-led study found that a portable, more affordable sensor recorded black carbon concentrations as accurately as the most widely used instrument for monitoring black carbon in real time. The portable sensor could help expand an accurate observation network to establish disease risk and create effective public health policies.
Published Reimagining electron microscopy: Bringing high-end resolution to lower-cost microscopes



Researchers have shown that expensive aberration-corrected microscopes are no longer required to achieve record-breaking microscopic resolution.