Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Using visible light to make pharmaceutical building blocks      (via sciencedaily.com)     Original source 

Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.

Physics: Optics
Published

Precise and less expensive 3D printing of complex, high-resolution structures      (via sciencedaily.com)     Original source 

Researchers have developed a new two-photon polymerization technique that uses two lasers to 3D print complex high-resolution structures. The advance could make this 3D printing process less expensive, helping it find wider use in a variety of applications, from consumer electronics to the biomedical field.

Biology: Biochemistry Biology: General Biology: Marine Chemistry: Biochemistry Ecology: Sea Life Energy: Alternative Fuels Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Giant clams may hold the answers to making solar energy more efficient      (via sciencedaily.com)     Original source 

Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics
Published

Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature      (via sciencedaily.com)     Original source 

Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Optoelectronics gain spin control from chiral perovskites and III-V semiconductors      (via sciencedaily.com)     Original source 

A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.

Chemistry: Biochemistry Physics: Optics
Published

Light targets cells for death and triggers immune response with laser precision      (via sciencedaily.com)     Original source 

A new method of precisely targeting troublesome cells for death using light could unlock new understanding of and treatments for cancer and inflammatory diseases.

Anthropology: General Biology: General Ecology: Animals Ecology: Endangered Species Ecology: Extinction Ecology: Nature Paleontology: Climate Paleontology: Early Mammals and Birds Paleontology: General
Published

The evidence is mounting: humans were responsible for the extinction of large mammals      (via sciencedaily.com)     Original source 

Human hunting, not climate change, played a decisive role in the extinction of large mammals over the last 50,000 years. This conclusion comes from researchers who reviewed over 300 scientific articles from many different fields of research.

Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

'World record' for data transmission speed      (via sciencedaily.com)     Original source 

Researchers have sent data at a record rate of 402 terabits per second using commercially available optical fiber. This beats their previous record, announced in March 2024, of 301 terabits or 301,000,000 megabits per second using a single, standard optical fiber.

Computer Science: General Physics: Optics
Published

New computational microscopy technique provides more direct route to crisp images      (via sciencedaily.com)     Original source 

A new computational microscopy technique solves for true high-resolution images without the guesswork that has limited the precision of other techniques.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Environmental: General Physics: Optics
Published

Light-controlled artificial maple seeds could monitor the environment even in hard-to-reach locations      (via sciencedaily.com)     Original source 

Researchers have developed a tiny robot replicating the aerial dance of falling maple seeds. In the future, this robot could be used for real-time environmental monitoring or delivery of small samples even in inaccessible terrain such as deserts, mountains or cliffs, or the open sea. This technology could be a game changer for fields such as search-and-rescue, endangered species studies, or infrastructure monitoring.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Ecology: Endangered Species Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds Paleontology: General
Published

Last surviving woolly mammoths were inbred but not doomed to extinction      (via sciencedaily.com)     Original source 

The last population of woolly mammoths was isolated on Wrangel Island off the coast of Siberia 10,000 years ago, when sea levels rose and cut the mountainous island off from the mainland. A new genomic analysis reveals that the isolated mammoths, who lived on the island for the subsequent 6,000 years, originated from at most 8 individuals but grew to 200--300 individuals within 20 generations. The researchers report that the Wrangel Island mammoths' genomes showed signs of inbreeding and low genetic diversity but not to the extent that it can explain their ultimate (and mysterious) extinction.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather Physics: Optics
Published

Common plastics could passively cool and heat buildings with the seasons      (via sciencedaily.com)     Original source 

By restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A chip-scale Titanium-sapphire laser      (via sciencedaily.com)     Original source 

With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

A new study highlights potential of ultrafast laser processing for next-gen devices      (via sciencedaily.com)     Original source 

A new study uncovers the remarkable potential of ultrafast lasers that could provide innovative solutions in 2D materials processing for many technology developers such as high-speed photodetectors, flexible electronics, biohybrids, and next-generation solar cells.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

An optical lens that senses gas      (via sciencedaily.com)     Original source 

A research team has developed a small optical lens, only a few millimeters in size, whose refractive behavior changes in the presence of gas. This 'intelligent' behavior of the micro-lens is enabled by the hybrid glass material from which it is made. The molecular structure of the lens consists of a three-dimensional lattice with cavities that can accommodate gas molecules, thereby affecting the optical properties of the material.

Biology: Biochemistry Biology: General Biology: Microbiology Chemistry: Biochemistry Physics: Optics
Published

Light-weight microscope captures large-scale brain activity of mice on the move      (via sciencedaily.com)     Original source 

With a new microscope that's as light as a penny, researchers can now observe broad swaths of the brain in action as mice move about and interact with their environments.

Offbeat: General Physics: Optics
Published

Moving objects precisely with sound      (via sciencedaily.com)     Original source 

Researchers have succeeded in directing floating objects around an aquatic obstacle course using only soundwaves. Their novel, optics-inspired method holds great promise for biomedical applications such as noninvasive targeted drug delivery.