Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Physics: Optics
Published Machine learning guides carbon nanotechnology



Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.
Published Researchers discover new ways to excite spin waves with extreme infrared light



Researchers have developed a pioneering method to precisely manipulate ultrafast spin waves in antiferromagnetic materials using tailored light pulses.
Published Ambitious roadmap for circular carbon plastics economy



Researchers have outlined ambitious targets to help deliver a sustainable and net zero plastic economy. The authors argue for a rethinking of the technical, economic, and policy paradigms that have entrenched the status-quo, one of rising carbon emissions and uncontrolled pollution.
Published Decarbonizing the world's industries



Harmful emissions from the industrial sector could be reduced by up to 85% across the world, according to new research. The sector, which includes iron and steel, chemicals, cement, and food and drink, emits around a quarter of global greenhouse gas (GHG) emissions -- planet-warming gases that result in climate change and extreme weather.
Published New breakthroughs for unlocking the potential of plasmonics



Plasmonics are unique light-matter interactions in the nanoscale regime. Now, a team of researchers has highlighted advances in shadow growth techniques for plasmonic materials, which have the potential to give rise to nanoparticles with diverse shapes and properties. They also introduce a method for large-scale production of nano-rotamers of magnesium with programmable polarization behavior, opening avenues for novel research applications.
Published Small yet mighty: Showcasing precision nanocluster formation with molecular traps



Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.
Published A faster, more efficient imaging system for nanoparticles



Scientists have developed a new system for imaging nanoparticles. It consists of a high-precision, short-wave infrared imaging technique capable of capturing the photoluminescence lifetimes of rare-earth doped nanoparticles in the micro- to millisecond range.
Published Some plastic straws degrade quicker than others



Not all plastics are created the same, and some last longer in the ocean than others. Scientists have been working for years to quantify the environmental lifetimes of a wide range of plastic goods to see which have the shortest and longest lifespans in the ocean. To determine what plastics persist in the ocean, the team tests different products in large tanks that recreate the natural ocean environment.
Published Researchers propose AI-guided system for robotic inspection of buildings, roads and bridges



Our built environment is aging and failing faster than we can maintain it. Recent building collapses and structural failures of roads and bridges are indicators of a problem that's likely to get worse, according to experts, because it's just not possible to inspect every crack, creak and crumble to parse dangerous signs of failure from normal wear and tear. In hopes of playing catch-up, researchers are trying to give robotic assistants the tools to help inspectors with the job.
Published Structural color ink: Printable, non-iridescent and lightweight



A new way of creating color uses the scattering of light of specific wavelengths around tiny, almost perfectly round silicon crystals. This development enables non-fading structural colors that do not depend on the viewing angle and can be printed. The material has a low environmental and biological impact and can be applied extremely thinly, promising significant weight improvements over conventional paints.
Published High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals



Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.
Published Researchers control biofilm formation using optical traps



Researchers showed that biofilm formation can be controlled with laser light in the form of optical traps. The findings could allow scientists to harness biofilms for various bioengineering applications.
Published Coal-based product could replace sand in concrete



A new study found that graphene derived from metallurgical coke, a coal-based product, through flash Joule heating could serve not only as a reinforcing additive in cement but also as a replacement for sand in concrete.
Published Turning glass into a 'transparent' light-energy harvester



Physicists propose a novel way to create photoconductive circuits, where the circuit is directly patterned onto a glass surface with femtosecond laser light. The new technology may one day be useful for harvesting energy, while remaining transparent to light and using a single material.
Published How to shift gears in a molecular motor



Scientists have long strived to develop artificial molecular motors that can convert energy into directed motion. Researchers have now presented a solution to a challenging problem: how motion can be transferred in a controlled manner from one place to another through a 'molecular gear'. Molecular motors have the potential for use in, for example, energy storage applications and medicine.
Published Deep learning reveals molecular secrets of explosive perchlorate salts



Perchlorate compounds are known for their explosive nature. To understand what makes these compounds so explosive, a team of researchers developed a novel deep learning-based method that analyses their crystal structure and molecular interactions to elucidate their physical properties. This novel technique avoids dangerous laboratory-based experiments and uses data to study the nature of compounds. Overall, the study marks a significant step towards data-driven and artificial intelligence-based methods for chemical research.
Published Cellular scaffolding rewired to make microscopic railways



Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.
Published Autonomous synthesis robot uses AI to speed up chemical discovery



Chemists have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human chemist in terms of speed and accuracy while also displaying a high level of ingenuity. As the first of its kind, it could significantly accelerate chemical discovery of molecules for pharmaceutical and many other applications.
Published Teaching nature to break human-made chemical bonds



A newly evolved enzyme could one day make silicone compounds biodegradable.
Published Shining a light on the hidden properties of quantum materials



Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).