Showing 20 articles starting at article 721

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: General, Physics: Optics

Return to the site home page

Physics: Optics
Published

Researchers succeed in high-sensitivity terahertz detection by 2D plasmons in transistors      (via sciencedaily.com)     Original source 

Researchers have developed a high-speed, high-sensitivity terahertz-wave detector operating at room temperature, paving the way for advancements in the development of next generation 6G/7G technology.

Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Laser-driving a 2D material      (via sciencedaily.com)     Original source 

Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.

Physics: Optics Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Pancake stack of films on a balloon most accurate gamma-ray telescope      (via sciencedaily.com)     Original source 

A pancake stack of radioactivity-sensitive films carried through the sky by a balloon was able to take the world's most accurate picture of a neutron star's gamma ray beam. To achieve this, researchers combined the oldest method of capturing radioactive radiation with the newest data capturing techniques and a clever time-recording device.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Novel catalyst system for CO2 conversion      (via sciencedaily.com)     Original source 

Researchers are constantly pushing the limits of technology by breaking new ground in CO2 conversion. Their goal is to turn the harmful greenhouse gas into a valuable resource. A novel catalyst system could help reach that goal.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting      (via sciencedaily.com)     Original source 

Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.

Computer Science: Virtual Reality (VR) Physics: Optics
Published

360-degree head-up display view could warn drivers of road obstacles in real time      (via sciencedaily.com)     Original source 

Researchers have developed an augmented reality head-up display that could improve road safety by displaying potential hazards as high-resolution three-dimensional holograms directly in a driver's field of vision in real time.

Physics: Optics
Published

Aerogel can become the key to future terahertz technologies      (via sciencedaily.com)     Original source 

High-frequency terahertz waves have great potential for a number of applications including next-generation medical imaging and communication. Researchers have shown that the transmission of terahertz light through an aerogel made of cellulose and a conducting polymer can be tuned. This is an important step to unlock more applications for terahertz waves.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New strategy reveals 'full chemical complexity' of quantum decoherence      (via sciencedaily.com)     Original source 

Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: General
Published

Unveiling molecular origami: A breakthrough in dynamic materials      (via sciencedaily.com)     Original source 

A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry
Published

Scientists tackle difficult-to-recycle thermoset polymers      (via sciencedaily.com)     Original source 

A team of scientists has got a step closer to making several different types of plastic much easier to recycle, using a method that could be applied to a whole range of difficult-to-recycle polymers, including rubbers, gels and adhesives.

Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather Physics: Optics
Published

Snowflakes swirling in turbulent air as they fall through a laser light sheet      (via sciencedaily.com)     Original source 

A winter wonderland calls to mind piles of fluffy, glistening snow. But to reach the ground, snowflakes are swept into the turbulent atmosphere, swirling through the air instead of plummeting directly to the ground. Researchers found that regardless of turbulence or snowflake type, acceleration follows a universal statistical pattern that can be described as an exponential distribution.

Biology: Biochemistry Biology: General Biology: Microbiology Chemistry: Biochemistry Physics: Optics
Published

Gentle x-ray imaging of small living specimens      (via sciencedaily.com)     Original source 

Researchers all over Germany have developed a new system for X-ray imaging, which is suited for both living specimens and sensitive materials. The system records images of micrometer resolution at a minimum radiation dose. In a pilot study, the researchers tested their method on living parasitic wasps and observed them for more than 30 minutes.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

First observation of how water molecules move near a metal electrode      (via sciencedaily.com)     Original source 

A collaborative team of experimental and computational physical chemists has made an important discovery in the field of electrochemistry, shedding light on the movement of water molecules near metal electrodes. This research holds profound implications for the advancement of next-generation batteries utilizing aqueous electrolytes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

For this emergent class of materials, 'solutions are the problem'      (via sciencedaily.com)     Original source 

Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices      (via sciencedaily.com)     Original source 

Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A promising pairing: Scientists demonstrate new combination of materials for quantum science      (via sciencedaily.com)     Original source 

For the first time, scientists publish results on a new chip composed of diamond and lithium niobate. The results demonstrate the combination as a promising candidate for quantum devices.

Physics: Optics
Published

This next generation blue light could potentially promote or hinder sleep on command      (via sciencedaily.com)     Original source 

Blue light from LED lamps and consumer electronics can mess with your sleep because it disrupts production of the natural sleep hormone melatonin. Tinted glasses or displays in night mode can mask, but don't remove, a portion of the disruptive wavelengths. But now, researchers report that they have designed more 'human-centric' LEDs that could potentially enhance drowsiness or alertness on command.