Showing 20 articles starting at article 761
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Physics: Optics
Published Soundwaves harden 3D-printed treatments in deep tissues



Engineers have developed a bio-compatible ink that solidifies into different 3D shapes and structures by absorbing ultrasound waves. Because the material responds to sound waves rather than light, the ink can be used in deep tissues for biomedical purposes ranging from bone healing to heart valve repair.
Published Catalyst for electronically controlled C--H functionalization



Scientists chipping away at one of the great challenges of metal-catalyzed C--H functionalization with a new method that uses a cobalt catalyst to differentiate between bonds in fluoroarenes, functionalizing them based on their intrinsic electronic properties. And their method is fast -- comparable in speed to those that rely on iridium.
Published Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic



Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.
Published Chemists create organic molecules in a rainbow of colors



Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.
Published Breakthrough in photoactivatable nanomedicine for the treatment of age-related macular degeneration



Researchers have developed a light-activatable prodrug nanomedicine for age-related macular degeneration (AMD) therapy. Through the intravenous injection of the nanomedicine and application of light irradiation to diseased eyes, anti-angiogenic and photodynamic combination therapy can be activated, offering a minimally invasive alternative for the treatment of AMD and other ocular disorders characterized by abnormal blood vessel growth.
Published Laser additive manufacturing: Listening for defects as they happen



Researchers have resolved a long-standing debate surrounding laser additive manufacturing processes with a pioneering approach to defect detection.
Published A farsighted approach to tackle nearsightedness



As humans age, our eyes adjust based on how we use them, growing or shortening to focus where needed, and we now know that blurred input to the eye while the eye is growing causes myopia. It is so specific that the eye grows exactly to compensate for the amount and the direction of blur. Researchers have built a high-frequency ultrasonography system to measure eye size and how quickly eyes grow to better understand myopia and its contributing factors.
Published Recycling concrete using carbon can reduce emissions and waste



Amid the rubble of large-sale earthquake, war or other disaster -- and as ageing buildings and infrastructure are replaced -- mountains of concrete are often taken to landfill or pounded into rubble for roads. For a more sustainable approach, experts are developing a 'value add' for old broken concrete to 'upcycling' coarse aggregate to produce a strong, durable and workable concrete using a small amount of a secret ingredient -- graphene.
Published Optical data storage breakthrough



Physicists have developed a technique with the potential to enhance optical data storage capacity in diamonds. This is possible by multiplexing the storage in the spectral domain.
Published Tracking undetectable space junk



Satellite and spacecraft operators may finally be able to detect small pieces of debris orbiting Earth using a new approach. Colliding pieces of space debris emit electric signals that could help track small debris littering Earth's orbit, potentially saving satellites and spacecraft.
Published Tiny electromagnets made of ultra-thin carbon



Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with new experiments: Experts fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices.
Published 'Doughnut' beams help physicists see incredibly small objects



A new laser-based technique can create images of structures too tiny to view with traditional microscopes, and without damaging them. The approach could help scientists inspect nanoelectronics, including the semiconductors in computer chips.
Published Researchers decode aqueous amino acid's potential for direct air capture of CO2



Scientists have made a significant stride toward understanding a viable process for direct air capture, or DAC, of carbon dioxide from the atmosphere. This DAC process is in early development with the aim of achieving negative emissions, where the amount of carbon dioxide removed from the envelope of gases surrounding Earth exceeds the amount emitted.
Published A color-based sensor to emulate skin's sensitivity



In a step toward more autonomous soft robots and wearable technologies, researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.
Published To help autonomous vehicles make moral decisions, researchers ditch the 'trolley problem'



Researchers have developed a new experiment to better understand what people view as moral and immoral decisions related to driving vehicles, with the goal of collecting data to train autonomous vehicles how to make 'good' decisions. The work is designed to capture a more realistic array of moral challenges in traffic than the widely discussed life-and-death scenario inspired by the so-called 'trolley problem.'
Published Researchers reveal new process for making anhydride chemical compounds



A collaborative research team has discovered a new process for making anhydrides that promises improvements in costs and sustainability.
Published Unsafe lead levels in school drinking water: new study IDs building risk factors



Civil and environmental engineers have determined the factors that may help identify the schools and daycare centers at greatest risk for elevated levels of lead in drinking water. The most telling characteristic for schools in Massachusetts is building age, with facilities built in the 1960s and 1970s -- nearly a third of the facilities tested -- at the greatest risk for having dangerously high water lead levels.
Published Phasing out fossil fuels could save millions of lives



Scientists provide new evidence to motivate rapid fossil fuel phaseout. The science team determined exposure to ambient air pollution and its health impacts using an updated atmospheric composition model, a newly developed relative risk model and recent satellite-based fine particle data. They estimated all-cause and disease-specific mortality and attributed them to emission categories. They show that phasing out fossil fuels is a remarkably effective health-improving and life-saving intervention. About 5 million excess deaths per year globally could potentially be avoided.
Published Durable plastic pollution easily, cleanly degrades with new catalyst



Found in fishing nets, carpet, clothing, Nylon-6 is a major contributor to plastic pollution, including ocean pollution. Now, chemists have developed a new catalyst that quickly, cleanly and completely breaks down Nylon-6 in a matter of minutes -- without generating harmful byproducts. Even better: The process does not require toxic solvents, expensive materials or extreme conditions, making it practical for everyday applications. In experiments, the new process recovered 99% of the polymer's building blocks, which can then be upcycled into higher-value products.