Showing 20 articles starting at article 781
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Physics: Optics
Published Blasts to clear World War II munitions could contaminate the ocean



World War II concluded decades ago, but live mines lurking on the ocean floor still pose threats, potentially spewing unexpected geysers or releasing contaminants into the water. Experts conduct controlled explosions to clear underwater munitions, but concerns have arisen over the environmental impacts from these blasts. New results show that the contamination produced by detonation depends on the blast type, with weaker explosions leaving behind more potentially toxic residues.
Published Artificial intelligence paves way for new medicines



Researchers have developed an AI model that can predict where a drug molecule can be chemically altered.
Published What was thought of as noise, points to new type of ultrafast magnetic switching



Researchers discover a new type of ultrafast magnetic switching by investigating fluctuations that normally tend to interfere with experiments as noise.
Published Greener solution powers new method for lithium-ion battery recycling



Used lithium-ion batteries from cell phones, laptops and a growing number of electric vehicles are piling up, but options for recycling them remain limited mostly to burning or chemically dissolving shredded batteries. Researchers have improved on approaches that dissolve the battery in a liquid solution in order to reduce the amount of hazardous chemicals used in the process. This simple, efficient and environmentally-friendly solution overcomes the main obstacles presented by previous approaches.
Published Nearly 400,000 new compounds added to open-access materials database



New technology often calls for new materials -- and with supercomputers and simulations, researchers don't have to wade through inefficient guesswork to invent them from scratch.
Published Eye-safe laser technology to diagnose traumatic brain injury



Researchers have designed and developed a novel diagnostic device to detect traumatic brain injury (TBI) by shining a safe laser into the eye.
Published Commitments needed to solve aviation's impact on our climate



Researchers could find no simple solution to limiting non-CO2 emissions from aircraft.
Published The secret life of an electromagnon



Scientists have revealed how lattice vibrations and spins talk to each other in a hybrid excitation known as an electromagnon. To achieve this, they used a unique combination of experiments on an X-ray free electron laser. Understanding this fundamental process at the atomic level opens the door to ultrafast control of magnetism with light.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Compact accelerator technology achieves major energy milestone



Researchers have demonstrated a compact particle accelerator less than 20 meters long that produces an electron beam with an energy of 10 billion electron volts (10 GeV). There are only two other accelerators currently operating in the U.S. that can reach such high electron energies, but both are approximately 3 kilometers long. This type of accelerator is called a wakefield laser accelerator.
Published New method verifies carbon capture in concrete



Carbon capture is essential to reduce the impact of human carbon dioxide emissions on our climate. Researchers have developed a method to confirm whether carbon in concrete originates from the raw materials, or from carbon in the air which has been trapped when it reacts with the concrete to form the mineral calcium carbonate. By measuring the ratio of certain carbon isotopes in concrete that had been exposed to the air and concrete that hadn't, the team could successfully verify that direct air carbon capture had occurred. This method could be useful for the industrial sector and countries looking to offset their carbon emissions.
Published Separating out signals recorded at the seafloor



Research shows that variations in pyrite sulfur isotopes may not represent the global processes that have made them such popular targets of analysis and interpretation. A new microanalysis approach helps to separate out signals that reveal the relative influence of microbes and that of local climate.
Published Chemists use oxygen, copper 'scissors' to make cheaper drug treatments possible



Researchers have devised a way to produce chemicals used in medicine and agriculture for a fraction of the usual cost. Using oxygen as a reagent and copper as a catalyst to break organic molecules' carbon-carbon bonds and convert them into amines, which are widely used in pharmaceuticals. Traditional metal catalysis uses expensive metals such as platinum, silver, gold and palladium, but the researchers used oxygen and copper -- an abundant base metal.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published AI for perovskite solar cells: Key to better manufacturing



Tandem solar cells based on perovskite semiconductors convert sunlight to electricity more efficiently than conventional silicon solar cells. In order to make this technology ready for the market, further improvements with regard to stability and manufacturing processes are required. Researchers have succeeded in finding a way to predict the quality of the perovskite layers and consequently that of the resulting solar cells: Assisted by Machine Learning and new methods in Artificial Intelligence (AI), it is possible assess their quality from variations in light emission already in the manufacturing process.
Published New method for determining the water content of water-soluble compounds



Researchers have developed a new method for the accurate determination of the water content of water-soluble compounds. This plays a significant role in various areas, including determining drug dosages.
Published Effect of aerosol particles on clouds and the climate captured better



Global measurements and model calculations show that the complex relationship between the chemistry and climate impact of aerosol particles can be successfully captured by a simple formula.
Published Long in the Bluetooth: Scientists develop a more efficient way to transmit data between our devices



Researchers have developed a more energy efficient way of connecting our personal devices. New technology consumes less power than Bluetooth and can improve battery life of tech accessories, including earbuds and fitness trackers. Future applications could see us unlocking a door by touching its handle or shaking hands to exchange phone numbers.
Published New percussion method to detect pipeline elbow erosion



An engineering research team is pioneering a new method, based on percussion, to detect pipeline elbow erosion to prevent economic losses, environmental pollution and other safety issues.
Published Putting an end to plastic separation anxiety



Bio-based plastics often end up in recycling streams because they look and feel like conventional plastic, but the contamination of these compostable products makes it much harder to generate functional material out of recycled plastic. Scientists have now developed a biology-driven process to convert these mixtures into a new biodegradable material that can be used to make fresh products. The scientists believe the process could also enable a new field of biomanufacturing wherein valuable chemicals and even medicines are made from microbes feeding off of plastic waste.